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Context

Rapid expansion of connected objects.
Increased attack surface.
Objects with physical proximity and network connectivity.
Software and physical threats.
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Issue

How can we maintain maximum protection against software attacks in the presence of physical
attacks?
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Information Flow Tracking : what is it ?

IFT overview
2 categories: static or dynamic
Different types: software, hardware, hybrids [3]
Protection against software attacks (e.g.: buffer overflow, format string, SQL injections, . . . ) [2, 5]

DIFT principle
We attach labels called tags to containers and specify an information flow policy, i.e. relations
between tags
At runtime, we propagate tags to reflect information flows that occur and detect any policy
violation
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DIFT : how does it work ?

Three steps
Tag initialization

Tag propagation
Tag check

C1

C2

C3

Levels of IFT

Application level
OS level
Low level
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DIFT : how does it work ?

Three steps
Tag initialization
Tag propagation
Tag check

C1

C2

C3

C4

C5

Levels of IFT
Application level
OS level
Low level

memory

address
tagregister tag
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Off-core DIFT

Advantages Disadvantages

Co-processor dedicated to DIFT [6, 11]
Flexible security policy
Low overhead (<10 %)

Unmodified CPU
Communication between CPU

and DIFT co-processor

Type of DIFT used in the Hardblare project developed at Lab-STICC [1]
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In-core DIFT

Advantages Disadvantages

DIFT in-core [4, 9] Low overhead (<10%) Invasive changes
Few security policies

Few security policies, but little impact on many embedded systems
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Motivations

FIA can be performed by disturbing the power supply or the clock, by using EM pulses or laser
shots [7].
The impact of an injection varies depending on the type of FIA.
Many studies have shown the vulnerabilities of critical systems against FIA :

Glitch injections : Voltage glitches can lead to glitch trust-zone mechanisms as shown in [10], power
supply to control the program counter [12],
EM Fault Injection (EMFI) : to recover an AES key by targeting the cache hierarchy and the MMU as
shown in [13],
SCA/FIA : [8] have shown that you can combine side-channel attacks (SCA) and FIAs to bypass the
PMP mechanism in a RISC-V processor

In this work
▶ We propose to study the combination of software and physical attacks to defeat the DIFT mechanism

implemented in the D-RI5CY processor.
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D-RI5CY

Design [9] made by researchers at Columbia University (USA) in partnership with the University of
Turin (Italy).
Based on the 32-bit RISC-V processor: RI5CY (PULP platform).
Tags on 1 bit in the core, but 4 bits in memory.
Flexible security policy that can be modified while an application is running.
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CONTROLLER

IF/ID ID/EX EX/WB
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Figure 1: Architecture of the D-RI5CY. DIFT components in red and pink
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Threat model

We consider an attacker able to
combine software and physical attacks to defeat the DIFT mechanism
To ensure an exhaustive campaign, we inject faults in registers associated to the DIFT-related
components

set to 0,
set to 1,
a bit-flip in all position of the targeted register,
keep the value of the previous cycle
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Vulnerability Assessment

Analysis of 4 cases: buffer overflow, format string, compare/store, compare/compute.
In-depth study of these cases.
Analysis of tag propagation temporally and logically.
Presentation of only 2 cases in this presentation
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Case 1: Buffer overflow

The attacker exploits a buffer overflow to access the return address register (ra).

PC T

A T

A T

A T

. . . T

. . . T

0x6fc T

T

T

T

T

T

T

T

T

... T

@RA T

The source buffer is
initialised, the desti-
nation buffer is empty
and the return address
(@RA) is trusted.

(a) Malicious buffer and ra trusted

PC T

A T

A T

A T

. . . T

. . . T

0x6fc T

A T

A T

A T

A T

A T

A T

A T

A T

... T

@RA : 0x6fc T

Buffer overflow occurs,
values are overwritten
with ’A’s

@RA is compromised
by overwriting it with
the address of the func-
tion shellcode

(b) Overflow and overwriting of ra and its tag

Thanks to DIFT, the tags associated with the buffer data overwrite the ra register tag.
As the data in the buffer is manipulated by the user, it is marked as untrusted.
When the function returns, the corrupted register ra is loaded into PC using a jalr instruction.
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Cycle 1

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp,
128
WB : 0xc28: lw s0,120(sp)

Cycle 2

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag

Exception handling

Figure 3: Temporal analysis of the tags propagation in Buffer Overflow attack
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ID Stage
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pc id o tag

CSR

0x701 : tcr q[21]

4
rst n

IF Stage

if valid o

IF Stage

pc if o tag

3

rst n

ID Stage

pc set o tag

2 ID Stage

pc mux o

1 Decoder

jump target mux sel o

IF Stage

instr rdata id o[6:0]

IF Stage

if valid o

Controller

jr stall o

Controller

jump done q

Controller

jump in dec i

IF Stage

instr valid id o

IF Stage

if valid o

ID Stage

branch in ex o

Controller

ctrl fsm cs

Reg File Tag

rf reg[1]

Figure 4: Logical analysis of the tags propagation in a Buffer Overflow attack
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Case 2: WU-FTPd

The vulnerability is the use of an unchecked user input as the format string parameter in functions
that perform formatting, e.g. printf()
An attacker can use the format tokens, to write into arbitrary locations of memory, e.g. the return
address of the function.

void echo ( ){
i n t a ;
r e g i s t e r i n t i asm ( " x8 " ) ;
a = i ; // &a = 107FD0
p r i n t f ( "%224u%n%35u%n%253u%n%n" , 1 , ( i n t ∗) ( a −4) , 1 , ( i n t ∗) ( a −3) , 1 , ( i n t ∗) ( a −2) , ( i n t ∗) ( a −1)) ;

}
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Cycle 1

Decode store of 0E0 in (a-4)

Register File Check Tag

ID stage

Fetch : 0x118c: nop
Decode : 0x1188: sw a4,0(a5)
Execute : 0x1184: lw a4,-
20(a3)
WB : 0x1180: addi a3,s0,-16

Cycle 2

Fetch : 0x118c: lw s0,44(sp)
Decode : 0x1188: sw a4,0(a5)
Execute :
WB : 0x1184: lw a4,-20(a3)

Cycle 3

Execute store in (a-4)

EX Stage

Tag Check Logic

EX Stage

ID stage

Fetch : 0x1190: addi sp,sp,48
Decode : 0x118c: nop
Execute : 0x1188: sw a4,0(a5)
WB :

regfile data ra id tag source s1 i tag

alu operand a ex o tag

check s1 tag

check a check s1 i tag

exception o

exception o tag

Exception handling

Figure 5: Temporal analysis of the tags propagation in a format string attack
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ID Stage
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Decoder
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Decoder
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Figure 6: Logical analysis of the tags propagation in a format string attack
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Experimental Setup - Simulation fault injections campaign

Logical fault injection simulation is used for preliminary evaluations
faults are injected in the HDL code at cycle accurate and bit accurate level
a set of 54 DIFT-related registers are targeted
a set of attack windows are determined based on the previous study
results are classed in four groups

crash: reference cycle count exceeded,
Nothing Significant To Report (NSTR)
delay: illegal instruction is delayed
success: DIFT has been bypassed

Simulations with QuestaSim 10.6e.
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Main results : 4 cases

Table 1: End of simulation status

Crash NSTR Delay Success Total
Buffer overflow 0 1677 25 26 (1.50%) 1728
WU-FTPd 0 1886 79 51 (2.53%) 2016
Compare/Store 0 1657 58 13 (0.75%) 1728
Compare/Sub/Add 0 1113 12 27 (2.34%) 1152
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Buffer overflow

Table 2: Buffer overflow : Register sensitivity as determined by fault model and simulation time

137140 ns 137180 ns 137220 ns 137260 ns 137300 ns
set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay

pc_if_o_tag ✓ ✓ ✓ ✓ ✓
rf_reg[1] ✓ ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓ ✓ ✓
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WU-FTPd

Table 3: WU-FTPd : Register sensitivity as determined by fault model and simulation time

2099100 ns 2099140 ns 2099180 ns 2099220 ns 2099260 ns 2099300 ns 2099340 ns 2099380 ns
set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay set0 set1 bitflip delay

alu_operand_b_ex_o_tag ✓ ✓ ✓
alu_operator_o_mode ✓ ✓ ✓
check_s1_o_tag ✓ ✓ ✓ ✓ ✓
regfile_alu_waddr_ex_o_tag ✓
rf_reg[15] ✓ ✓ ✓ ✓
store_dest_addr_ex_o_tag ✓ ✓ ✓ ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
use_store_ops_ex_o ✓ ✓ ✓ ✓ ✓
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Conclusion

We have shown that the D-RI5CY DIFT mechanism is vulnerable to FIAs
We identified 13 DIFT-related sensitive registers
117 simulated fault injections over 6624 have lead to a successful attack (1.77%)
2.63% of the simulated injections delay the DIFT exception
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Perspectives

In future works we will
Extend the D-RI5CY DIFT mechanism with countermeasures to face fault injection attacks
Extend our study to the entire D-RI5CY core since several processor registers can also impact the
robustness of the DIFT mechanism against FIA
Strengthen the proposed analysis through actual fault injection campaign targeting a FPGA implemen-
tation
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Thank you for your attention.
If you have any questions, feel free to ask them now.
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