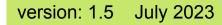


TELECOM

彩雪田

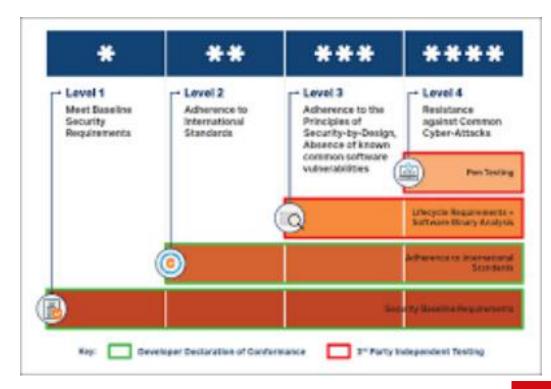
Paris


EMBEDDED CYBER-SECURITY: FROM REQUIREMENTS TO TECHNOLOGICAL SOLUTIONS

Prof. Sylvain Guilley

CTO & Co-founder

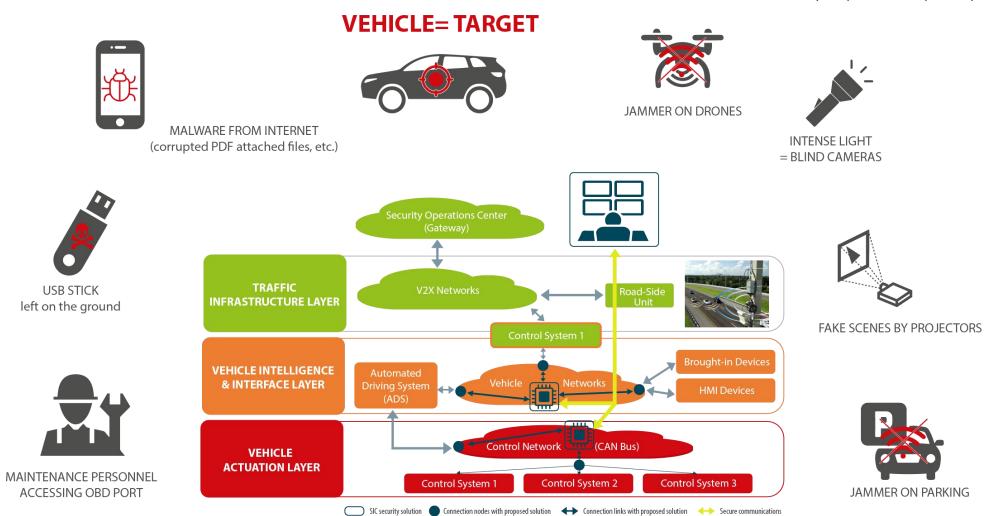
Université Bretagne Sud


EMBEDDED CYBER-SECURITY

Ubiquitous, from IoT end points to datacenters.

In such open and broad ecosystem, the protection of data is a major concern

Short Name	Long Name	Level of Confidence	
EAL 1	Functionally tested Lowes		
EAL 2	Structurally tested		
EAL 3	Methodically tested and checked		
EAL 4	Methodically designed, tested and reviewed	Medium	
EAL 5	Semiformally designed and tested		
EAL 6	Semiformally verified design and tested		
EAL 7	Formally verified design and tested	Highest	


Cryptographic module can be run on non-validated GS and firmware
Adds role-based authentication, tamper evidence and OS safeguards
Adds physical tempering evidence
Adds resistance to tampering and supards

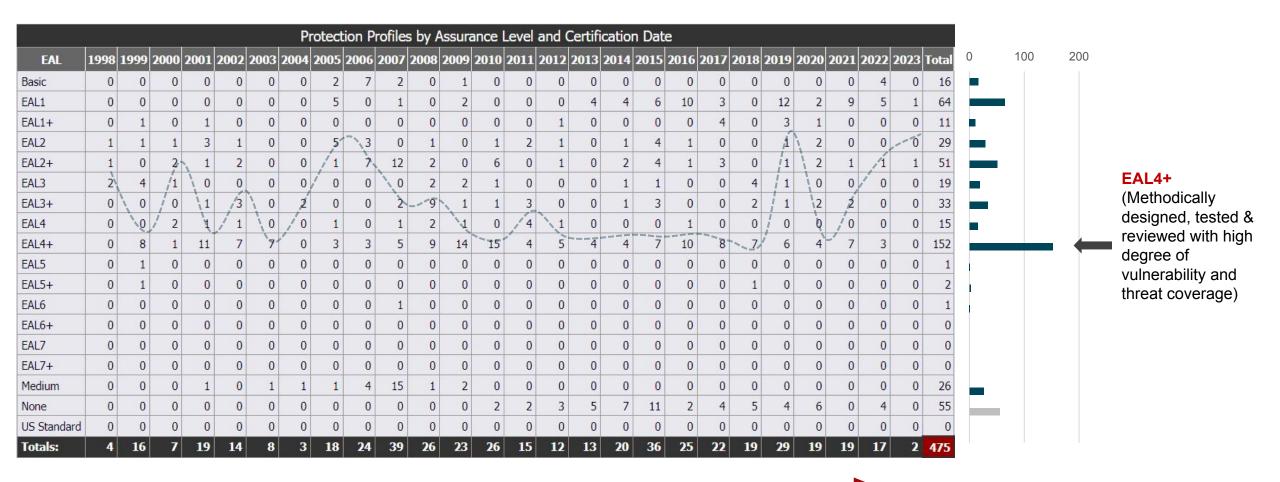
LOCAL THREATS

- CWE-1189 Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
- CWE-1191 On-Chip Debug and Test Interface With Improper Access Control
- CWE-1231 Improper Prevention of Lock Bit Modification
- CWE-1233 Security-Sensitive Hardware Controls with Missing Lock Bit Protection
- CWE-1240 Use of a Cryptographic Primitive with a Risky Implementation
- CWE-1244 Internal Asset Exposed to Unsafe Debug Access Level or State
- CWE-1256 Improper Restriction of Software Interfaces to Hardware Features
- CWE-1260 Improper Handling of Overlap Between Protected Memory Ranges
- CWE-1272 Sensitive Information Uncleared Before Debug/Power State Transition
- CWE-1274 Improper Access Control for Volatile Memory Containing Boot Code
- CWE-1277 Firmware Not Updateable
- CWE-1300 Improper Protection of Physical Side Channels

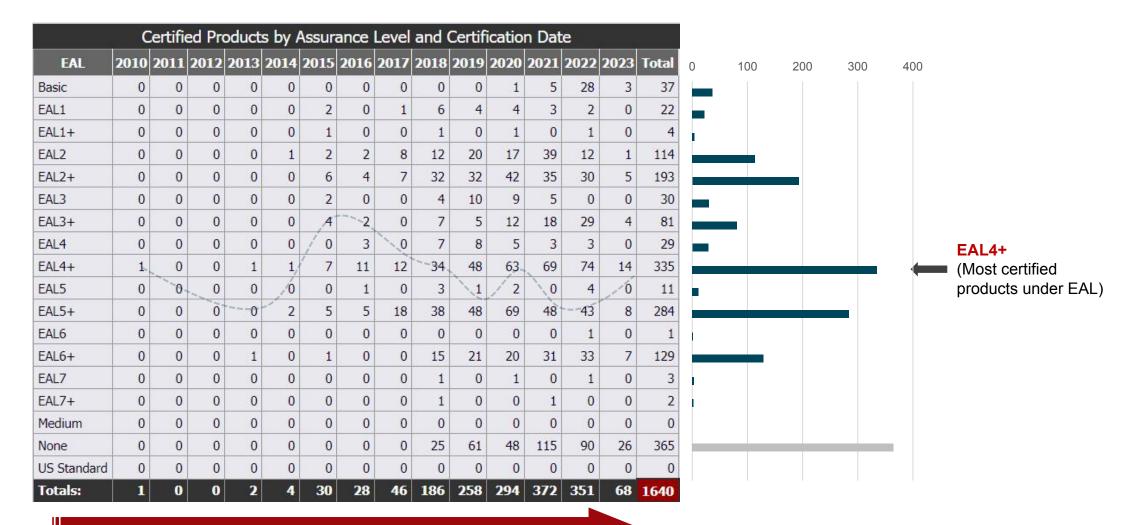
Logo	Vuln. ID	Description
	CVE - 2020 - 8694 CVE - 2020 - 8694	With PLATYPUS, we present novel software-based power side-channel attacks on Intel server, desktop and laptop CPUs. We exploit the unprivileged access to the Intel RAPL interface exposing the processor's power consumption to infer data and extract cryptographic keys.
	CVE-2022-23823	Hertzbleed is a new family of side-channel attacks: frequency side channels. In the worst case, these attacks can allow an attacker to extract cryptographic keys from remote servers that were previously believed to be secure.
	CVE-2019-11090	They are practical. A local adversary can recover the ECDSA key from Intel fTPM in 4-20 minutes depending on the access level. We even show that these attacks can be performed remotely on fast networks, by recovering the authentication key of a virtual private network (VPN) server in 5 hours.
	CVE-2019-15809 CVE-2019-13627 CVE-2019-13627 CVE-2019-13629 CVE-2019-14318	This page describes our discovery of a group of side-channel vulnerabilities in implemen- tations of ECDSA in programmable smart cards and cryptographic software libraries. Our attack allows for practical recovery of the long-term private key.
	CVE-2020-0549	We present CacheOut, a new speculative execution attack that is capable of leaking data from Intel CPUs across many security boundaries. SGAxe is an evolution of CacheOut, specifically targeting SGX enclaves.

Logo	Description
CLKSCREW	In this work, we present the CLKSCREW attack, a new class of fault attacks that exploit the security-obliviousness of energy management mechanisms to break security.
PLUNDER VOLT	Modern processors [] offer the user the opportunity to modify the frequency and voltage through priviledged software interfaces. With Plundervolt we showed that these software interfaces can be exploited to undermine the system's security. We were able to corrupt the integrity of Intel SGX on Intel Core processors by controling the voltage when executing enclave computations.
VOLT PILLAGER	Previous work such as Plundervolt has shown that software-based undervolting can induce faults into Intel SGX enclaves and break their security guarantees. However, Intel have ad- dressed this issue with microcode updates. With VoltPillager, we show that hardware-based undervolting can achieve the same (and more) as Plundervolt, and bypass all currently avai- lable countermeasures for SGX.
Voltiockey	In this paper, we propose an innovative software-controlled hardware fault-based attack, Volt- Jockey, on multi-core processors that adopt dynamic voltage and frequency scaling (DVFS) techniques for energy efficiency.

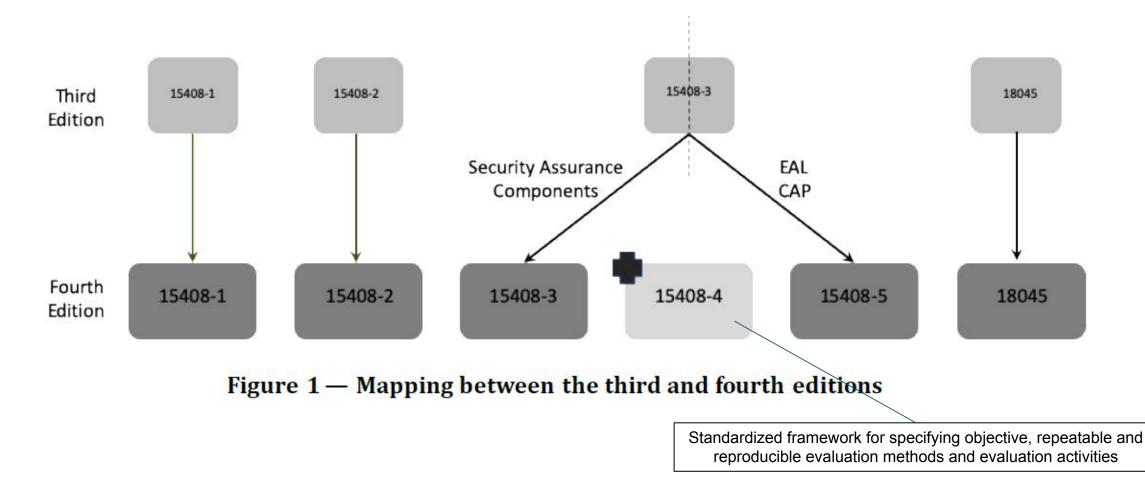
COMMON CRITERIA – A ROBUST SECURITY TOOL


- § Growing market size with different functional & therefore security functional requirements
- § Growing number of IT security devices/products
- § Growing number of threats and vulnerabilities
- § Need to rationalize how security protections are specified and sized
- § Complex mix of HW & FW

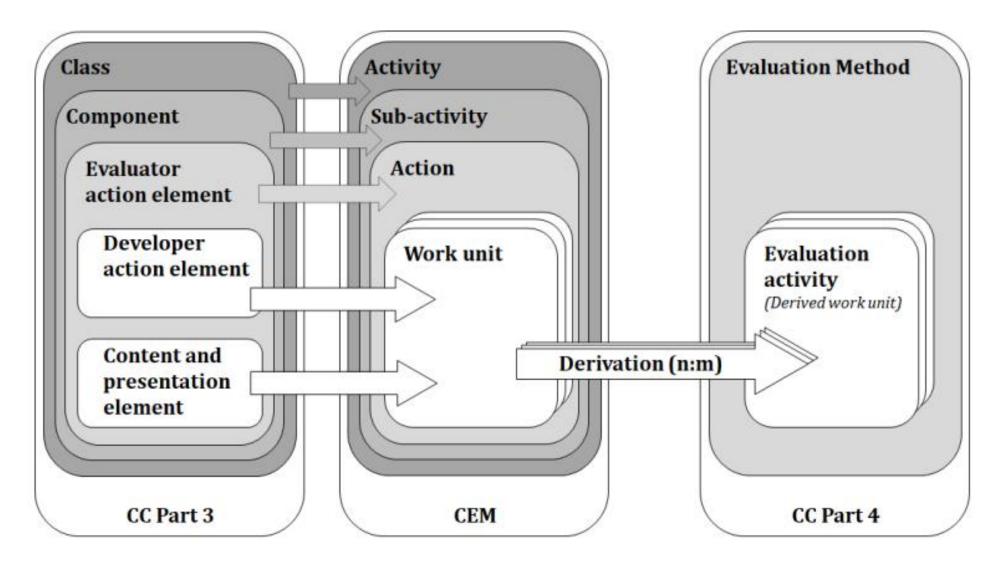
- § Increasing number of Protection Profiles (PPs) fine tuned to growing market needs
- § Most PPs of EAL4+ assurance level for enhanced threat coverage and protection
- § Evolving evaluation requirements through various revisions to capture
- § Fine tuning of evaluation methods and activities
- § Composition for allowing flexibility in product development


COMMON CRITERIA – PP RECOGNITION BY EAL

Increasing cumulation of Protection Profiles


COMMON CRITERIA – CERTIFIED PRODUCTS

Increasing number of certified products



§ Structural differences between V3 and V4 (new, pub. 2022) of the CC

COMMON CRITERIA PART 4

COMMON CRITERIA V4

§ Evaluation differences between V3 and V4 (new, pub. 2022) of the CC

Benefits:

All the tests are known beforehand

No need for tailored test plan during evaluation

Even if relevant attack scenarios that were not considered by the risk owner in the PP are not tested

New approach (reduce evaluator efforts)

Specification-based approach	Attack-based approach
Keywords: exact conformance, direct rationale PPs, TOE-specific evaluation methods	Keywords: strict/demonstrable conformance, EALs, TOE type specific evaluation methods
All evaluated TOEs are compliant to a given list of requirements: nothing more and nothing less	All evaluated TOEs are protected against a given set of threats
All tests are set and known beforehand	The attacker strength is set and known beforehand; the tests themselves may b fine-tuned (penetration testing)

Figure 2 — Specification-based and attack-based approaches

Benefits:

Investigative approach

Follows EALs strictly

Existing approach

COMMON CRITERIA: A QUANTITATIVE MEASUREMENT

- § Common Criteria offer assurance through vetted practices:
 - Documentary:
 - ASE: SECURITY TARGET EVALUATION
 - ADV: DEVELOPMENT
 - AGD: GUIDANCE DOCUMENTS
 - ALC: LIFE-CYCLE SUPPORT
 - Experimental:
 - ATE: TESTS
 - AVA: VULNERABILITY ASSESSMENT
- § It is usually admitted that **AVA** is ruling the pratical security level:
 - Quantitative notion of EAL
 - Levels 1 to 7

EUROPEAN UNION AGENCY FOR CYBERSECURITY

CYBERSECURITY CERTIFICATION

EUCC, a candidate cybersecurity certification scheme to serve as a successor to the existing SOG-IS

SECURITY LEVELS

Security is quantitative

Range of values*	TOE resistant to attackers with attack potential of:	
0-15	No rating	
16-20	Basic	
21-24	Enhanced-Basic	
25-30	Moderate	
31 and above	High	

<u>Source:</u> EUCC, a candidate cybersecurity certification scheme to serve as a successor to the existing SOG-IS, May 2021, V1.1.1.

Factors	Identification	Exploitation
Elapsed time		
< one hour	0	0
< one day	1	3
< one week	2	4
< one month	3	6
> one month	5	8
> four months56	6	10
Not practical	•	•
Expertise		
Layman	0	0
Proficient	2	2
Expert	5	4
Multiple Expert	7	6
Knowledge of the TOE		
Public	0	0
Restricted	2	2
Sensitive	4	3
Critical	6	5
Very critical	9	*
Not practical		•
Access to the TOE (1)		
< 10 samples	0	0
< 30 samples	1	2
< 100 samples	2	4
> 100 samples	3	6
Not practical		
Equipment		
None	0	0
Standard	1	2
Specialized (2)	3	4
Bespoke	5	6
Multiple Bespoke	7	8
Open samples / Samples with known secrets		
Public/Not required	0	NA
Restricted	2	NA
Sensitive	5	NA
Critical	9	NA
Not practical (Samples with known secrets only)	.	NA

SECURITY LEVELS

Security is quantitative

Values	Attack potential required to exploit scenario:	TOE resistant to attackers with attack potential of:	Meets assurance components::	Failure of components:
0-9	Basic	No rating	-	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4, AVA_VAN.5
10-13	Enhanced- Basic	Basic	AVA_VAN.1, AVA_VAN.2	AVA_VAN.3, AVA_VAN.4, AVA_VAN.5
14-19	Moderate	Enhanced- Basic	<u>AVA_VAN.1,</u> <u>AVA_VAN.2,</u> <u>AVA_VAN.3</u>	AVA_VAN.4, AVA_VAN.5
20-24	High	Moderate	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4	AVA_VAN.5
=>25	Beyond High	High	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4, AVA_VAN.5	-

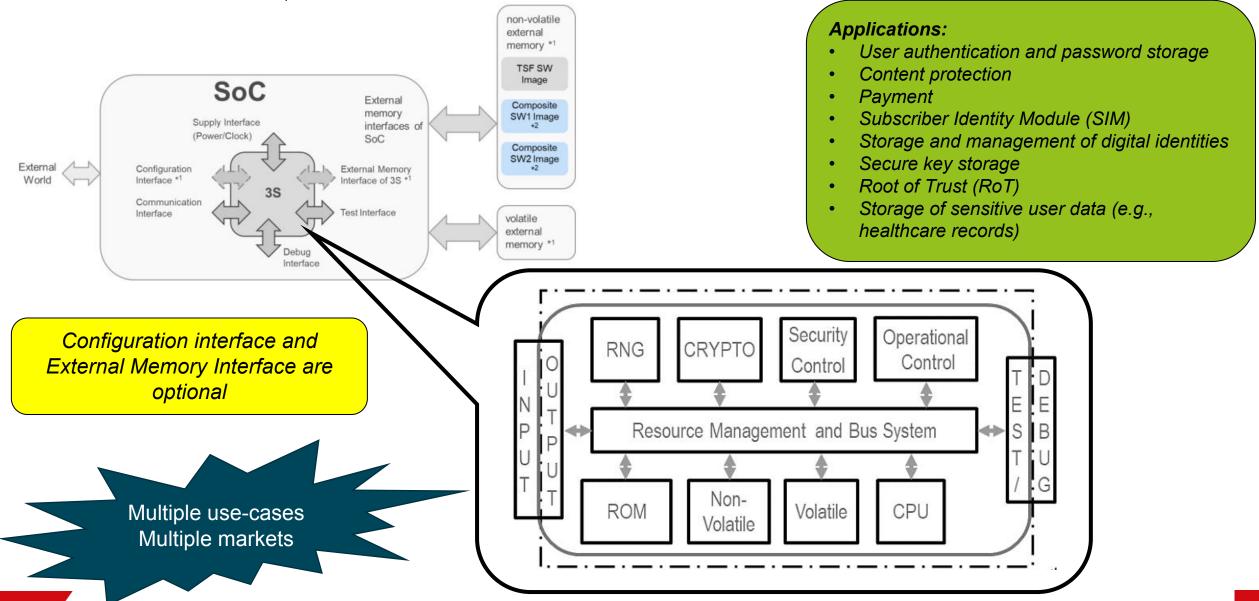
Factor	Value	
Elapsed Time		
<= one day	0	
<= one week	1	
<= two weeks	2	
<= one month	4	
<= two months	7	
<= three months	10	
<= four months	13	
<= five months	15	
<= six months	17	
> six months	19	
Expertise		
Layman	0	
Proficient	3*(1)	
Expert	6	
Multiple experts	8	
Knowledge of TOE		
Public	0	
Restricted	3	
Sensitive	7	
Critical	11	
Window of Opportunity		
Unnecessary / unlimited access	0	
Easy	1	
Moderate	4	
Difficult	10	
None	**(2)	
Equipment		
Standard	0	
Specialised	4(3)	
Bespoke	7	
Multiple bespoke	9	

SECURITY LEVELS

Security is quantitative

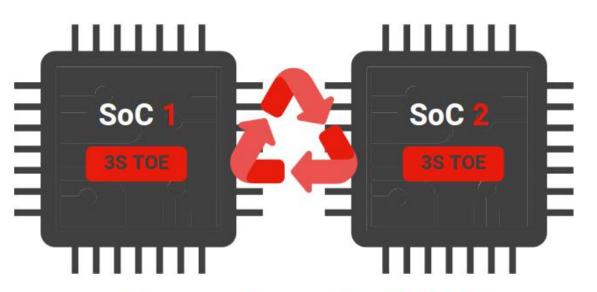
Table B.3 — Rating of vulnerabilities and TOE resistance

Values	Attack potential required to exploit scenario:	Meets assurance components:	Failure of components:
0-9	Basic	-	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4, AVA_VAN.5
10-13	Enhanced- Basic	AVA_VAN.1, AVA_VAN.2	AVA_VAN.3, AVA_VAN.4, AVA_VAN.5
14-19	Moderate	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3	AVA_VAN.4, AVA_VAN.5
20-24	High	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4	AVA_VAN.5
=>25	Beyond High	AVA_VAN.1, AVA_VAN.2, AVA_VAN.3, AVA_VAN.4, AVA_VAN.5	-


Table B.2 — Calculation of attack potential

Factor	Value
Elapsed Time	
<= one day	0
<= one week	1
<= two weeks	2
<= one month	4
<= two months	7
<= three months	10
<= four months	13
<= five months	15
<= six months	17
> six months	19
Expertise	
Layman	0
Proficient	3 ^a
Expert	6
Multiple experts	8
Knowledge of TOE	
Public	0
Restricted	3
Sensitive	7
Critical	11
Window of Opportunity	
Unnecessary / unlimited access	0
Easy	1
Moderate	4
Difficult	10
None	**b
Equipment	

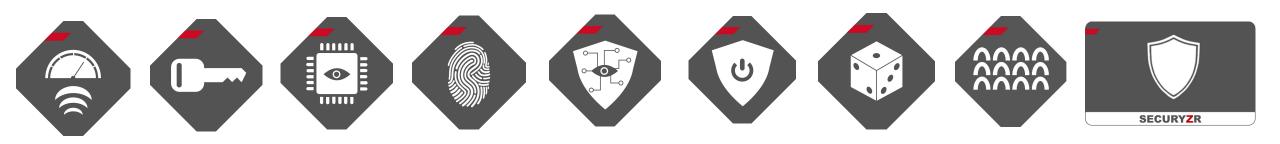
Source: CEM:2022


SECURITY SUB-SYSTEM (3S)

Pre-certification:

- § 3S industry
 - IPs: pieces of technology aiming at being reused
- § Consequence:
 - Certification per product
 - => Instead per project

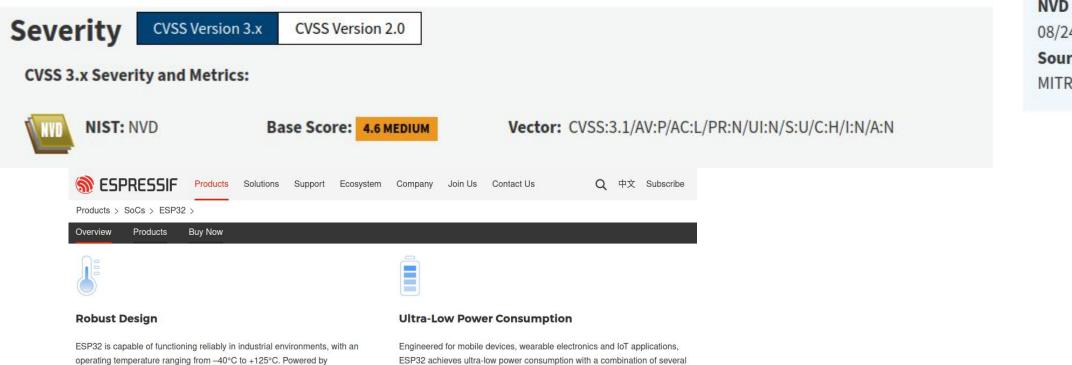
Re-use of a certified 3S TOE from one SoC to another one


<u>Source:</u> EUCA 2022 Rachel Menda-Shabat, Winbond, Subgroup Chair Jean-Philippe Galvan, Qualcomm, ITSC Co-Chair

DEFENSE IN DEPTH & IN BREADTH

§ Illustration of the defense vs cost tradeoff

Countermeasure: Depth	Breadth
Digital Sensor	Number of instances (1~128)
Active Shield	One or Two (orthogonal) meshes
Error Handler	Decision rules or SVM
Side-Channel Analysis Protection using Masking	Security Order
Error-Detection Schemes	Number of detected errors
CFI: Cyber Escort Unit	Inter- or intra-procedural coverage


₩CVE-2019-17391 Detail

advanced calibration circuitries, ESP32 can dynamically remove external

circuit imperfections and adapt to changes in external conditions

Description

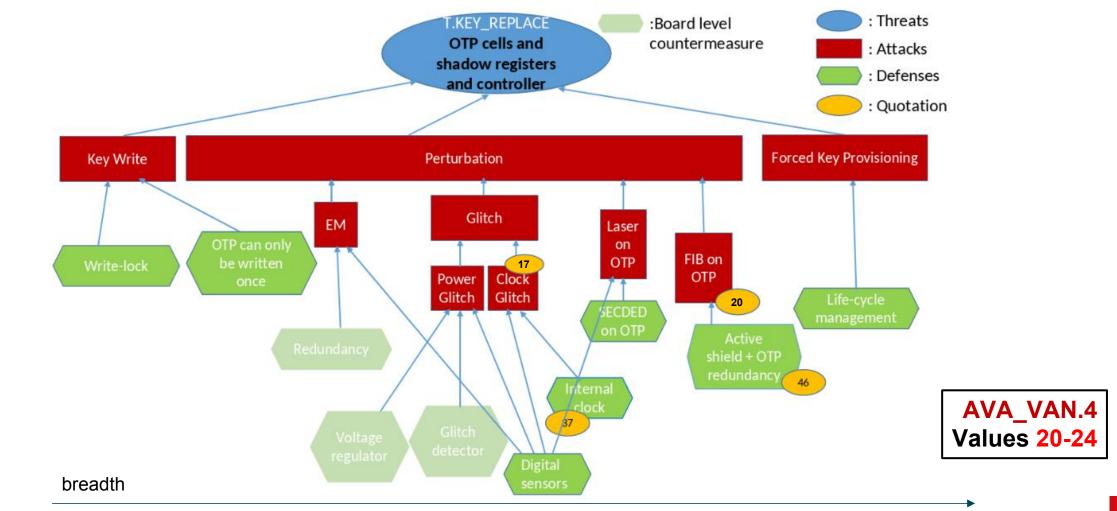
An issue was discovered in the Espressif ESP32 mask ROM code 2016-06-08 0 through 2. Lack of anti-glitch mitigations in the first stage bootloader of the ESP32 chip allows an attacker (with physical access to the device) to read the contents of read-protected eFuses, such as flash encryption and secure boot keys, by injecting a glitch into the power supply of the chip shortly after reset.

types of proprietary software. ESP32 also includes state-of-the-art features

such as fine-grained clock gating, various power modes and dynamic power

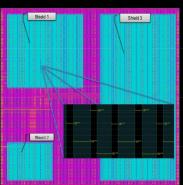
scaling.

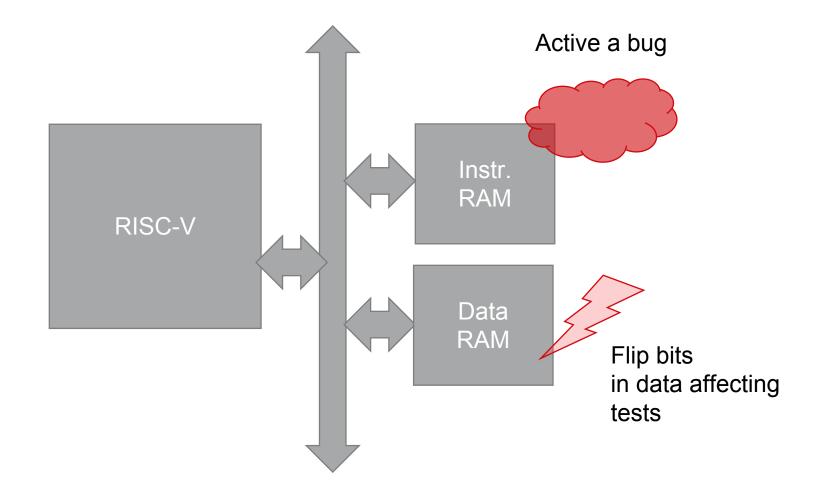
QUICK INFO


CVE Dictionary Entry: CVE-2019-17391 NVD Published Date: 11/14/2019 NVD Last Modified: 08/24/2020 Source: MITRE

depth

ATTACK-PROTECTION TREE


§ Example of **T.KEY_REPLACE** threat from **PP0114** C2C V2X EAL4+ on **OTP**


QUOTATION OF ATTACKS (PP 0117)

§ Active shield: yes or no? Analysis based on **T.Phys-Probing** threat

Prepare chip such that we ca	n either read out sensitive signals or e	edit the chip to disable counterm	easures			
Chip must be working after t	he experimental preparation			1		
approximate and						
With		n performing the attack>				
A. Front side wo AS	B. Front side wo AS w Sensitive signals are routed in lower layers (not easily accessible)	C. Front side w AS	D. Back side 👷 AS	Comments/Remarks		
7	10	13	15	Based on works of Christopher <u>Tarnovsky</u> B with <220nm, 4+ metals, which is old	llackHat 2010	
3	6	8	8			
0	11	11	11			
4	10	10	10			
7	7	9	9		-	
21	44	51	20.520			
AVA_VAN.4	AVA_VAN.5	AVA_VAN.5	AVA_VAN.5			
ess)	Comments					
l (if any)	very error prone because the shield is dense					
					AVA_VA	
sensitive wire (easier <u>wo</u> AS close to chip surface)	challenging for B					
	Chip must be working after the With A. Front side working AS A. Front side working AS A. Front side working after the	Chip must be working after the experimental preparation With increasing order of complexity in the increasing order of complexity in the signals are routed in lower layers (not easily accessible) A. Front side wo AS Sensitive signals are routed in lower layers (not easily accessible) 7 10 3 6 0 11 4 10 7 10 3 6 0 11 4 10 7 7 6 7 7 7 10 7 7 10 3 6 9 7 10 7 7 10 3 6 9 7 7 7 7 7 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9	Chip must be working after the experimental preparation With increasing order of complexity in performing the attack -> A. Front side wo AS B. Front side wo AS w Sensitive signals are routed in lower layers (not easily accessible) C. Front side w AS 7 10 13 3 6 8 0 11 11 4 10 10 7 7 9 4 10 10 7 7 9 21 44 51 AVA_VAN.4 AVA_VAN.5 AVA_VAN.5 ignals especially challenging for the cases B and D 2 10 11 11 40 10 10	With increasing order of complexity in performing the attack -> A. Front side wo AS B. Front side wo AS w Sensitive signals are routed in lower layers (not easily accessible) C. Front side w AS D. Back side wo AS 7 10 13 15 3 6 8 8 0 11 11 11 4 10 10 10 7 7 9 9 9 9 9 9 21 44 51 53 AVA_VAN.4 AVA_VAN.5 AVA_VAN.5 AVA_VAN.5 esso) Comments and D and D and C attack and D because the substrate is thick and drilling must stop precisely at the attack and filling must stop precisely at the attack and fillin	Chip must be working after the experimental preparation With increasing order of complexity in performing the attack -> A. Front side ygo AS B. Front side ygo AS w Sensitive in lower layers (not easily accessible) C. Front side w AS D. Back side ygo AS Comments/Remarks 7 10 13 15 Based on works of Christopher Tarrowsky B with <220nm, 4+ metals, which is old	

EXAMPLE #2: AN ATTACK ON THE CPU COUNTERMEASURE

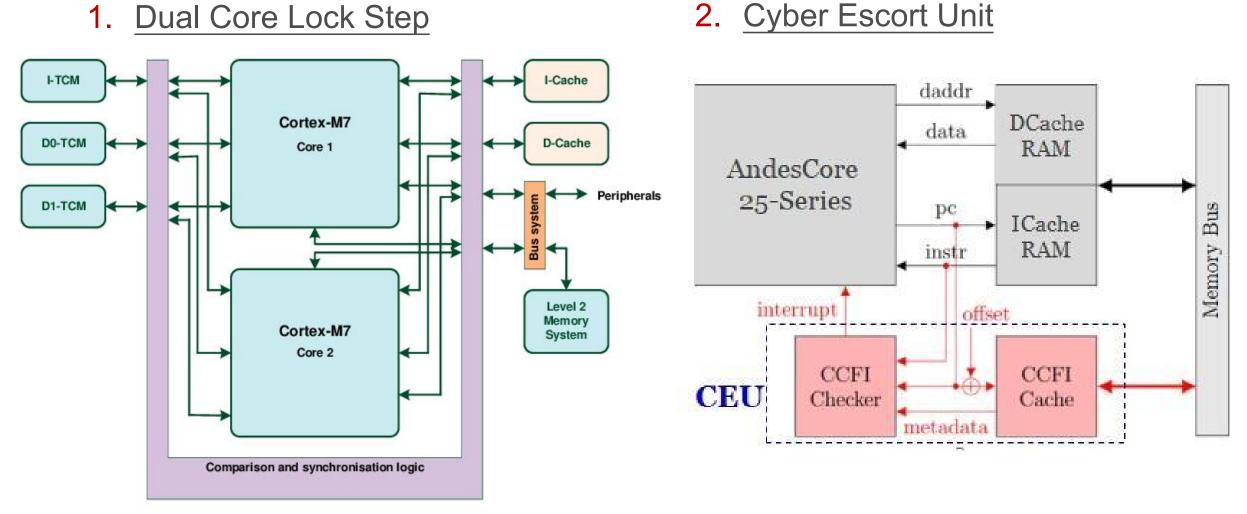
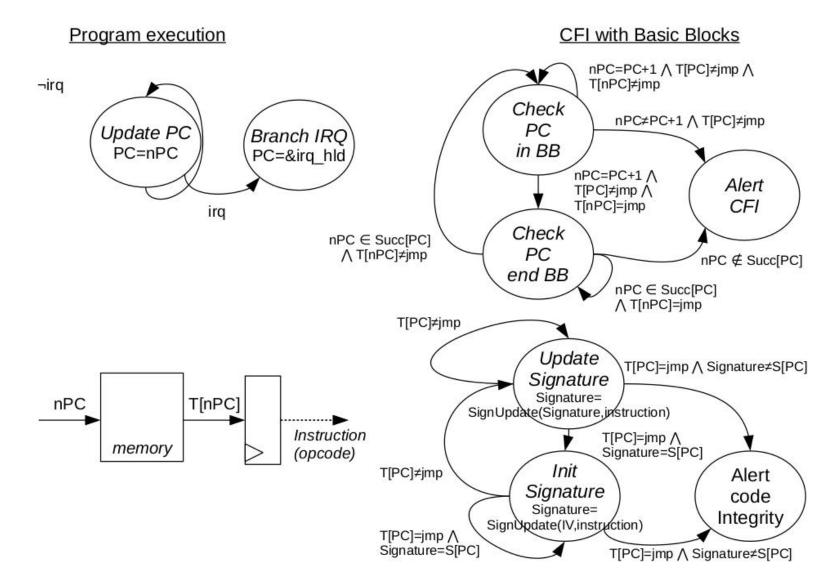
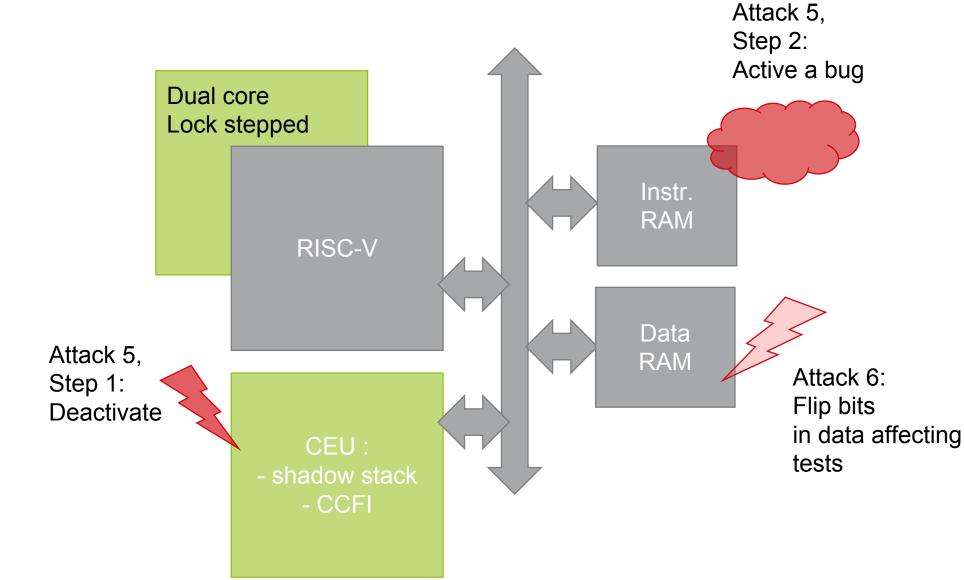
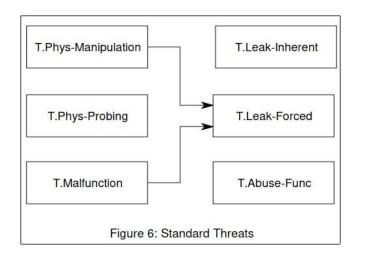



Fig. 3. Dual-Core Lock-Step configuration in the Cortex-M7 processor


Offset by two clock periods to avoid «same effect»

EXAMPLE #2: AN ATTACK ON THE CPU COUNTERMEASURE



§ Threats: PP 0084

§ Coverage

Coverage	Nature	Location	Dual Core LS	Shadow Stack	Code verificati on	Control Flow Integrity	lmmutab le	BIST	
		CPU	х			х			
Perturba tion Cyber/ Logical	Instr. RAM	0 24		x	x	0 24		Attack #6	
	Data RAM								
		CPU					х		
	Cyber/	Instr. RAM			x	x			
		Data RAM		x (address es)					
Defect	Physical	RAMs						х	Attack #5
Defect	Cyber/Lo	Inst. RAM				х			


- § [Attack 5] Physical faults are double covered by CEU and lock step. Protection against bugs are "only" covered by CEU. Hence the attack 5 consists in disabling CEU and then to exploit a bug. The only way to disable CEU is to which it off by an accurate attack, such as FIB circuit edition or laser attack on the DFF that enables/disables it. Such attack requires a critical knwoledge of the position of elements to disable the CEU protection, but the disablement can be done whenever. Then, finding the bug can take some time, but it is eventually expected that some bug will be found, and it "suffices" for the attacker to identify inputs to activate it.
- **§ [Attack 6]** Faults on data leading to a security breach undetected by CEU (i.e., since the control flow will be respected) can allow to achieve an adversarial goal. But such attack has double complexity in terms of identification and in exploitation. The identification requires a deep understanding the of the code, most probably resulting in a decompilation and a mean to run the code as if it is on the target (a complete simulation equivalent, which is basically that used to design the code). Hence a leak of critical information. Then, the attacker shall devise where, when, and what value to give to the faulty variable. In terms of exploitation, the variable will spawn in memory only dynamically, hence the local and timely and accurate fault shall be triggered. This entails a multiple expertise.

	Attack 5	Attack 6	Comments/Remarks
Elapsed Time	4	7	
Expertise	3	8	
Knowledge of TOE	11		Code is <u>BlackBox</u> (attack should be accurate in space and time)> identification and exploitation is difficult
Window of Opportunity	4	4	
Equipment	7	9	Example FIB, etc. advanced equipment
	29	39	
Scope of attack	AVA_VAN.5	AVA_VAN.5	Using CEMv3.1R5

Range of values*	TOE resistant to attackers with attack potential of:
0-15	No rating
16-20	Basic
21-24	Enhanced-Basic
25-30	Moderate
31 and above	High

Table 13: Rating of vulnerabilites and TOE resistance

§ Common Criteria can be applied upfront

§ They allow to quantify a security level, starting from the specifications

§ Such trends are encouraged by 3S PP

§ Benefits: reuse of pre-certified components

§ CC is not just a certification but also a framework/tool to select the depth and

breadth of security IPs

THANK YOU FOR YOUR ATTENTION

CONTACTS

sales-EMEA@secure-IC.com
sales-APAC@secure-IC.com
sales-CHINA@secure-IC.com
sales-JAPAN@secure-IC.com
sales-TAIWAN@secure-IC.com
sales-US@secure-IC.com

FOLLOW US ON SOCIAL MEDIA

