
Thwarting Timing Attacks in Microcontrollers using
Fine-grained Hardware Protections

Nicolas GAUDIN

Lab-STICC
Vianney LAPÔTRE, Pascal COTRET & Guy GOGNIAT

July 7, 2023

Nicolas GAUDIN (Lab-STICC) July 7, 2023 1 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 2 / 23



Prerequisites : Cache memories

Aim :
▶ bring data closer
▶ reduce memory latencies

Figure 1: Memory hierarchy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 3 / 23



Prerequisites : Cache attacks

How to retrieve information of another process ?

Nicolas GAUDIN (Lab-STICC) July 7, 2023 4 / 23



Prerequisites : Cache attacks
How to retrieve information of another process ?

Attacker
Fill the cache 1○

cache set

A1

A2

A3

A4

Victim

Nicolas GAUDIN (Lab-STICC) July 7, 2023 4 / 23



Prerequisites : Cache attacks
How to retrieve information of another process ?

Attacker
Fill the cache 1○

cache set

A1

V17

V18

A4

Victim

Execution 2○

Nicolas GAUDIN (Lab-STICC) July 7, 2023 4 / 23



Prerequisites : Cache attacks
How to retrieve information of another process ?

Attacker
Fill the cache 1○

Re-access the cache 3○

cache set

A1

A2

A3

A4

�

�

�

�

Victim

Execution 2○

Nicolas GAUDIN (Lab-STICC) July 7, 2023 4 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution

Nicolas GAUDIN (Lab-STICC) July 7, 2023 4 / 23



SCRATCHS project

Hardware Toolchain

RISC-V
Core

SCRATCHS add-in

Memory
hierarchy

SCRATCHS add-in

UART

Timers

SPI GPIOs

SCRATCHS add-in

naive

.c

µ
.S

mem

map

3

33

0101101

trusted
binary
code

new ISA

contract

Side-Channel Resistant Applications Through Co-designed Hardware/Software

▶ Aimed attacks : Timing side channel on the microarchitecture
▶ Ensure efficient constant-time execution and used only when necessary

▶ Best convenience between hardware and toolchain contributions
Nicolas GAUDIN (Lab-STICC) July 7, 2023 5 / 23



Considered system

Protection machanisms

▶ Software controlled mode
for constant time execution

▶ Locked and Unlocked
memory accesses

Processor

▶ monocore CV32E40P

▶ 4 stage in-order

▶ 32 bits

▶ no speculation

▶ physically addressed

Cache hierarchy

▶ L1 data cache

▶ 4 way set associative

▶ 8 KiB cache

▶ 16 bytes cache line

To keep in mind : the simpler the system, the simpler the integration
(theoretically)

Nicolas GAUDIN (Lab-STICC) July 7, 2023 6 / 23



Threat model

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

�secret1

�secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

An OS schedules � and � processes.

Only timing side channels are considered.

The attacker � :
▶ knows the victim � program.
▶ measures time to cycle.

▶ victim execution
▶ its memory accesses {hit;miss}

▶ can interrupt.
▶ shares cache with victim.
▶ has different memory spaces.

Nicolas GAUDIN (Lab-STICC) July 7, 2023 7 / 23



Threat model

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim

start

�secret1

�secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

An OS schedules � and � processes.

Only timing side channels are considered.

The attacker � :
▶ knows the victim � program.
▶ measures time to cycle.

▶ victim execution
▶ its memory accesses {hit;miss}

▶ can interrupt.
▶ shares cache with victim.
▶ has different memory spaces.

Nicolas GAUDIN (Lab-STICC) July 7, 2023 7 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 7 / 23



Considered system

Protection machanisms

▶ Software controlled mode
for constant time execution

▶ Locked and Unlocked
memory accesses

Processor

▶ monocore CV32E40P

▶ 4 stage in-order

▶ 32 bits

▶ no speculation

▶ physically addressed

Cache hierarchy

▶ L1 data cache

▶ 4 way set associative

▶ 8 KiB cache

▶ 16 bytes cache line

Nicolas GAUDIN (Lab-STICC) July 7, 2023 8 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 8 / 23



State of the Art – Constant time operations

This issue is known and thwarted on x861, Arm2 but also on RISC-V3 ISAs.

From these existing solutions, we implement it. Our contribution is not the implementa-
tion, but the way we use it. The compiler intelligence (the other side of the SCRATCHS
project) switches in constant time when necessary.

Ê : full performance, timings leaks during execution

Ê : performance loss, constant time execution

1Intel, “Data Operand Independent Timing Instruction Set Architecture (ISA) Guidance” ,
2arm, “DIT, Data Independent Timing register on Arm Armv8-A Architecture Registers” ,
3openHWGroup, “Divider module of CV32E40S RISC-V core” ,

Nicolas GAUDIN (Lab-STICC) July 7, 2023 9 / 23



Multi-cycle operations
Table 1: List of multi-cycle instructions (CV32E40P)

Instruction Type Cycles
Integer Computational 1

CSR Access
4 (some CSRs)
1 (the other CSRs)

Load/Store
1 access
2 accesses (if data is non-aligned)

Jump 2

Branch
1 (not-taken)
3 (taken)

Multiplication
1 (32-LSBs computation)
5 (32-MSBs computation)

Division
Remainder 3-35

Nicolas GAUDIN (Lab-STICC) July 7, 2023 10 / 23



Multi-cycle operations
Table 1: List of multi-cycle instructions (CV32E40P)

Instruction Type Cycles
Integer Computational 1

CSR Access
4 (some CSRs)
1 (the other CSRs)

Load/Store
1 access
2 accesses (if data is non-aligned)

Jump 2

Branch
1 (not-taken)
3 (taken)

Multiplication
1 (32-LSBs computation)
5 (32-MSBs computation)

Division
Remainder 3-35

Nicolas GAUDIN (Lab-STICC) July 7, 2023 10 / 23



Multi-cycle operations
Table 1: List of multi-cycle instructions (CV32E40P)

Instruction Type Cycles
Integer Computational 1

CSR Access
4 (some CSRs)
1 (the other CSRs)

Load/Store
1 access
2 accesses (if data is non-aligned)

Jump 2

Branch
1 (not-taken)
3 (taken)

Multiplication
1 (32-LSBs computation)
5 (32-MSBs computation)

Division
Remainder 3-35

Nicolas GAUDIN (Lab-STICC) July 7, 2023 10 / 23



Constant time operations

Involved instructions : div, divu, rem, remu

Naive Constant time
Divider value Cycles Leak1 Idle cycles Total Leak
0x0000 0000 35 0x0000 0000 0 35 ø
0x0000 0001 34 0x0000 0001 1 35 ø
0x0000 0002 33 0x0000 0002 2 35 ø
0x0003 F5A2 17 0x0002 xxxx 18 35 ø
0xBE63 20C1 3 0x8xxx xxxx 32 35 ø

12 = 0b001x, 8 = 0b1xxx
Nicolas GAUDIN (Lab-STICC) July 7, 2023 11 / 23



How to implement and use it

Figure 2: CV32E40P Block diagram

With the swctm pseudo instruction
compiled as :
csrr{s|c} rd, CONSTANT_TIME, rs1

1 # block of sensitive code
2 swctm #set CT mode
3 add a2, t0 , a5
4 c.addi a3, 82
5 div a0, a3 , a2
6 rem t1, a5 , a2
7 lw a2, 4(sp)
8 div a0, a3 , a2
9 swctm #reset CT mode

Listing 1: Application example

Nicolas GAUDIN (Lab-STICC) July 7, 2023 12 / 23



How to implement and use it

Figure 2: CV32E40P Block diagram

With the swctm pseudo instruction
compiled as :
csrr{s|c} rd, CONSTANT_TIME, rs1

1 # block of sensitive code
2 swctm #set CT mode
3 add a2, t0 , a5
4 c.addi a3, 82
5 div a0, a3 , a2
6 rem t1, a5 , a2
7 lw a2, 4(sp)
8 div a0, a3 , a2
9 swctm #reset CT mode

Listing 2: Application example
Nicolas GAUDIN (Lab-STICC) July 7, 2023 12 / 23



Commentaires d’améliorations

▶ expliquer le temps d’exécution avec des valeurs différentes de diviseur (en activant
ou non le CTM)

▶ faire une simulation d”attaque’ en mode interruption de l’attaquant...

Nicolas GAUDIN (Lab-STICC) July 7, 2023 13 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 13 / 23



State of the Art – Hardware Mitigations of Cache

Randomization based caches
RPcachea, ScatterCacheb and Ceaserc propose cache designs based on randomiza-
tion. Prime+Prune+Probed find eviction sets in randomized caches from only hundred
accesses. It requires regular updates of the cache mapping.
• Randomized caches provide a strong security (as long as randomness is randomness)
but can be a source of performance loss.

aWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
bWerner et al., “ScatterCache: Thwarting Cache Attacks via Cache Set Randomization” , 2019
cQureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping” , 2018
dPurnal et al., “Systematic Analysis of Randomization-based Protected Cache Architectures” , 2021

Nicolas GAUDIN (Lab-STICC) July 7, 2023 14 / 23



State of the Art – Hardware Mitigations of Cache

Caches partitioning - with the support of the software
NoMo-cachea partitions the cache by allocating a set of ways to sensitive applications.
Also, SecDCPb (secure and unsecure ways), or COLORISc (memory page allocation)
use coarse-grained partitioning.
Wang et al. proposes PLcached, a lightweight mechanism allowing the lock of process
cache lines.
• Cache partitioning is (generally) a lightweight solution, but may have a major impact
on performance depending on granularity.

aDomnitser et al., “Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks” , 2012
bWang et al., “SecDCP: Secure dynamic cache partitioning for efficient timing channel protection” , 2016
cYe et al., “COLORIS: A dynamic cache partitioning system using page coloring” , 2014
dWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007

Nicolas GAUDIN (Lab-STICC) July 7, 2023 15 / 23



State of the Art

PLcache1 problem :

In accordance with the replacement policy, side effects are introduced accessing in the
same cache set of a locked data. It modifies the victim execution behavior on the memory
accesses near the locked data. Thus, this approach does not guarantee constant time
access to locked cache lines.

PLcache provides cache line reservation rather than cache line locking.

1Wang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007

Nicolas GAUDIN (Lab-STICC) July 7, 2023 16 / 23



Commentaires d’améliorations

▶ mettre en forme le problème de plcache (figure de cache où des accès viennent
modifié un truc)

▶ expliquer mieux ce qu’apporte notre solution (aucune modification)

Nicolas GAUDIN (Lab-STICC) July 7, 2023 17 / 23



Protection mechanisms

LRU way
selection

update LRU
unlocking

update LRU no update
LRU

exception
update LRU

locking

no

yes

no

yes

no

yes

no

yes

no

yes

yes

no

requested
lock ?

way locked ?
lock

permitted ?

hit ?

requested
unlock ?

way locked ?

Figure 3: Lock handling procedure

Nicolas GAUDIN (Lab-STICC) July 7, 2023 18 / 23



Cache architecture

tag

11

index

7

bytes
offset
4

memory address

tag�V data tag�V data

tag�V data tag�V data

tag�V data tag�V data

… …

…

…

…

way0 way3

set0

set1

set127

= =

hit0

hit3

{miss;hit}

LRU

selected way

Figure 4: 4-way set associative cache architecture

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

4

3

2

1

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1 µ

4

3

2

� execution of 1○

▶ cache miss
▶ locking the data

▶ cannot be evicted
▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

µ

µ

4

3

�

execution of 2○

▶ cache miss
▶ locking the data

▶ cannot be evicted
▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

µ

3

4

�

execution of 3○

▶ cache miss
▶ standard access

▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

µ

3

4

execution of 4○

▶ cache hit
▶ access to a locked line

▶ return the data
▶ no update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

µ

2

3

4

execution of 5○

▶ unlocking the data
▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

a3

a4

µ

µ

3

4

�

execution of 6○

▶ cache miss
▶ locking the data

▶ cannot be evicted
▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a2

a5

a4

µ

µ

4

3�

execution of 7○

▶ cache miss
▶ evince a3

▶ standard access
▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Behavior of the replacement policy using the lock principle

1 lock a1
2 lock a2
3 lw a3
4 lw a1
5 unlock a2
6 lock a4
7 lw a5
8 lw a6

cache set

updated
replacement

policy

a1

a6

a5

a4

µ

µ

3

4

�

execution of 8○

▶ cache miss
▶ evince a2 (no longer

locked)
▶ standard access

▶ update the policy

Nicolas GAUDIN (Lab-STICC) July 7, 2023 19 / 23



Post-synthesis area results 1

Core: CV32E40P (RISC-V based)
Cache: 8 KiB, 4-way set-associative, L1 data cache

BRAMs LUTs FFs
CV32E40P core - 4950 2142
Cache (w/o lock) 8.5 489 888
Cache (w/ lock) 8.5 512 894

1Synthesis for Kyntex-7 chip using Vivado 2022 tool
Nicolas GAUDIN (Lab-STICC) July 7, 2023 20 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 20 / 23



Perspectives

▶ Evaluate performances and security with many benches
▶ Find the best cache parameter (#set, #way, cache line size, #free way)

▶ Implement an embedded OS
▶ support process IDs
▶ lock with many processes

▶ Decrease our current limits
▶ involve locking other cache levels

Nicolas GAUDIN (Lab-STICC) July 7, 2023 21 / 23



Conclusion

CT Operations
An easily scalable implementation to other RISC-V instructions if needed.

Cache
A promising solution with a strong security. We need more evaluation in both security
and performance. Moreover, we can have a different approach to manage locked data
with more than one cache level.
ref. Perspectives section

Nicolas GAUDIN (Lab-STICC) July 7, 2023 22 / 23



Thank you

further information on : https://project.inria.fr/scratchs/

Nicolas GAUDIN (Lab-STICC) July 7, 2023 23 / 23



Bibliography

arm. “DIT, Data Independent Timing register on Arm Armv8-A Architecture
Registers”. In: url:
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-
Registers/DIT--Data-Independent-Timing.
Domnitser, Leonid et al. “Non-Monopolizable Caches: Low-Complexity Mitigation of
Cache Side Channel Attacks”. In: ACM Transactions on Architecture and Code
Optimization (Jan. 2012). doi: 10.1145/2086696.2086714.
Intel. “Data Operand Independent Timing Instruction Set Architecture (ISA)
Guidance”. In: url: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html.

Nicolas GAUDIN (Lab-STICC) July 7, 2023 23 / 23

https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Registers/DIT--Data-Independent-Timing
https://doi.org/10.1145/2086696.2086714
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html


Bibliography

openHWGroup. “Divider module of CV32E40S RISC-V core”. In: url:
https://github.com/openhwgroup/cv32e40s/blob/
29d44172a6341160a40c3637fa883e311eb6744c/rtl/cv32e40s_div.sv#L246.
Purnal, Antoon et al. “Systematic Analysis of Randomization-based Protected Cache
Architectures”. In: Proc. IEEE Symposium on Security and Privacy (SP). May 2021.
doi: 10.1109/SP40001.2021.00011.
Qureshi, Moinuddin K. “CEASER: Mitigating Conflict-Based Cache Attacks via
Encrypted-Address and Remapping”. In: Proc. International Symposium on
Microarchitecture (MICRO). 2018. doi: 10.1109/MICRO.2018.00068.
Wang, Yao et al. “SecDCP: Secure dynamic cache partitioning for efficient timing
channel protection”. In: 53ndDesign Automation Conference (DAC). 2016. doi:
10.1145/2897937.2898086.

Nicolas GAUDIN (Lab-STICC) July 7, 2023 23 / 23

https://github.com/openhwgroup/cv32e40s/blob/29d44172a6341160a40c3637fa883e311eb6744c/rtl/cv32e40s_div.sv#L246
https://github.com/openhwgroup/cv32e40s/blob/29d44172a6341160a40c3637fa883e311eb6744c/rtl/cv32e40s_div.sv#L246
https://doi.org/10.1109/SP40001.2021.00011
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/2897937.2898086


Bibliography

Wang, Zhenghong and Ruby B. Lee. “New Cache Designs for Thwarting Software
Cache-Based Side Channel Attacks”. In: Proc. International Symposium on
Computer Architecture (ISCA). 2007. doi: 10.1145/1250662.1250723.
Werner, Mario et al. “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization”. In: Proc. 28th USENIX Security Symposium (USENIX Security).
2019. url: https:
//www.usenix.org/conference/usenixsecurity19/presentation/werner.
Ye, Ying et al. “COLORIS: A dynamic cache partitioning system using page
coloring”. In: Proc. International Conference on Parallel Architecture and
Compilation Techniques (PACT). 2014. doi: 10.1145/2628071.2628104.

Nicolas GAUDIN (Lab-STICC) July 7, 2023 23 / 23

https://doi.org/10.1145/1250662.1250723
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://doi.org/10.1145/2628071.2628104

	Summary
	Introduction & Context
	SCRATCHS contribution
	Bibliography
	References

