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Prerequisites : Cache memories

Aim :
▶ bring data closer
▶ reduce memory latencies

Figure 1: Memory hierarchy
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Prerequisites : Cache attacks

How to retrieve information of another process ?
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SCRATCHS project
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Side-Channel Resistant Applications Through Co-designed Hardware/Software

▶ Aimed attacks : Timing side channel on the microarchitecture
▶ Ensure efficient constant-time execution and used only when necessary

▶ Best convenience between hardware and toolchain contributions
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Considered system

Protection machanisms

▶ Software controlled mode
for constant time execution

▶ Locked and Unlocked
memory accesses

Processor

▶ monocore CV32E40P

▶ 4 stage in-order

▶ 32 bits

▶ no speculation

▶ physically addressed

Cache hierarchy

▶ L1 data cache

▶ 4 way set associative

▶ 8 KiB cache

▶ 16 bytes cache line

To keep in mind : the simpler the system, the simpler the integration
(theoretically)
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Threat model

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
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An OS schedules � and � processes.

Only timing side channels are considered.

The attacker � :
▶ knows the victim � program.
▶ measures time to cycle.

▶ victim execution
▶ its memory accesses {hit;miss}

▶ can interrupt.
▶ shares cache with victim.
▶ has different memory spaces.
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State of the Art – Constant time operations

This issue is known and thwarted on x861, Arm2 but also on RISC-V3 ISAs.

From these existing solutions, we implement it. Our contribution is not the implementa-
tion, but the way we use it. The compiler intelligence (the other side of the SCRATCHS
project) switches in constant time when necessary.

Ê : full performance, timings leaks during execution

Ê : performance loss, constant time execution

1Intel, “Data Operand Independent Timing Instruction Set Architecture (ISA) Guidance” ,
2arm, “DIT, Data Independent Timing register on Arm Armv8-A Architecture Registers” ,
3openHWGroup, “Divider module of CV32E40S RISC-V core” ,
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Multi-cycle operations
Table 1: List of multi-cycle instructions (CV32E40P)

Instruction Type Cycles
Integer Computational 1

CSR Access
4 (some CSRs)
1 (the other CSRs)

Load/Store
1 access
2 accesses (if data is non-aligned)

Jump 2

Branch
1 (not-taken)
3 (taken)

Multiplication
1 (32-LSBs computation)
5 (32-MSBs computation)

Division
Remainder 3-35
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Constant time operations

Involved instructions : div, divu, rem, remu

Naive Constant time
Divider value Cycles Leak1 Idle cycles Total Leak
0x0000 0000 35 0x0000 0000 0 35 ø
0x0000 0001 34 0x0000 0001 1 35 ø
0x0000 0002 33 0x0000 0002 2 35 ø
0x0003 F5A2 17 0x0002 xxxx 18 35 ø
0xBE63 20C1 3 0x8xxx xxxx 32 35 ø

12 = 0b001x, 8 = 0b1xxx
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How to implement and use it

Figure 2: CV32E40P Block diagram

With the swctm pseudo instruction
compiled as :
csrr{s|c} rd, CONSTANT_TIME, rs1

1 # block of sensitive code
2 swctm #set CT mode
3 add a2, t0 , a5
4 c.addi a3, 82
5 div a0, a3 , a2
6 rem t1, a5 , a2
7 lw a2, 4(sp)
8 div a0, a3 , a2
9 swctm #reset CT mode

Listing 1: Application example
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Commentaires d’améliorations

▶ expliquer le temps d’exécution avec des valeurs différentes de diviseur (en activant
ou non le CTM)

▶ faire une simulation d”attaque’ en mode interruption de l’attaquant...

Nicolas GAUDIN (Lab-STICC) July 7, 2023 13 / 23



Summary

1 Introduction & Context

2 SCRATCHS contribution
Constant time operations
Thwarting cache attacks
Perspectives

Nicolas GAUDIN (Lab-STICC) July 7, 2023 13 / 23



State of the Art – Hardware Mitigations of Cache

Randomization based caches
RPcachea, ScatterCacheb and Ceaserc propose cache designs based on randomiza-
tion. Prime+Prune+Probed find eviction sets in randomized caches from only hundred
accesses. It requires regular updates of the cache mapping.
• Randomized caches provide a strong security (as long as randomness is randomness)
but can be a source of performance loss.

aWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
bWerner et al., “ScatterCache: Thwarting Cache Attacks via Cache Set Randomization” , 2019
cQureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-Address and Remapping” , 2018
dPurnal et al., “Systematic Analysis of Randomization-based Protected Cache Architectures” , 2021
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State of the Art – Hardware Mitigations of Cache

Caches partitioning - with the support of the software
NoMo-cachea partitions the cache by allocating a set of ways to sensitive applications.
Also, SecDCPb (secure and unsecure ways), or COLORISc (memory page allocation)
use coarse-grained partitioning.
Wang et al. proposes PLcached, a lightweight mechanism allowing the lock of process
cache lines.
• Cache partitioning is (generally) a lightweight solution, but may have a major impact
on performance depending on granularity.

aDomnitser et al., “Non-Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks” , 2012
bWang et al., “SecDCP: Secure dynamic cache partitioning for efficient timing channel protection” , 2016
cYe et al., “COLORIS: A dynamic cache partitioning system using page coloring” , 2014
dWang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
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State of the Art

PLcache1 problem :

In accordance with the replacement policy, side effects are introduced accessing in the
same cache set of a locked data. It modifies the victim execution behavior on the memory
accesses near the locked data. Thus, this approach does not guarantee constant time
access to locked cache lines.

PLcache provides cache line reservation rather than cache line locking.

1Wang and Lee, “New Cache Designs for Thwarting Software Cache-Based Side Channel Attacks” , 2007
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Commentaires d’améliorations

▶ mettre en forme le problème de plcache (figure de cache où des accès viennent
modifié un truc)

▶ expliquer mieux ce qu’apporte notre solution (aucune modification)
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Protection mechanisms
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Figure 3: Lock handling procedure
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Cache architecture
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Behavior of the replacement policy using the lock principle
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Post-synthesis area results 1

Core: CV32E40P (RISC-V based)
Cache: 8 KiB, 4-way set-associative, L1 data cache

BRAMs LUTs FFs
CV32E40P core - 4950 2142
Cache (w/o lock) 8.5 489 888
Cache (w/ lock) 8.5 512 894

1Synthesis for Kyntex-7 chip using Vivado 2022 tool
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Perspectives

▶ Evaluate performances and security with many benches
▶ Find the best cache parameter (#set, #way, cache line size, #free way)

▶ Implement an embedded OS
▶ support process IDs
▶ lock with many processes

▶ Decrease our current limits
▶ involve locking other cache levels
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Conclusion

CT Operations
An easily scalable implementation to other RISC-V instructions if needed.

Cache
A promising solution with a strong security. We need more evaluation in both security
and performance. Moreover, we can have a different approach to manage locked data
with more than one cache level.
ref. Perspectives section

Nicolas GAUDIN (Lab-STICC) July 7, 2023 22 / 23



Thank you

further information on : https://project.inria.fr/scratchs/
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