
Dependabot and Security Pull Requests:
A Large Empirical Study

Realized by :

• Mr REBATCHI Hocine

CYBERUS Summer School 2023

Under the supervision of :

• Prof. BISSYANDÉ Tegawendé

(SnT - University of Luxembourg)

• Prof. MOHA Naouel (ÉTS)

04/07/2023

Hocine REBATCHI
PhD Student (Applied Research profile)

Software

Engineering

Software

Security

Machine

Learning

• Software Engineer + Master Degree : Fall 2015 – Fall 2020

• PhD Student : Winter 2021 – Fall 2024

https://www.facebook.com/hocine.rebatchi/
https://twitter.com/hocine_rebt
https://www.linkedin.com/in/hocine-rebatchi-4a38a1101/

1

2

3

4

5

6

Table of
Contents

Problem Scoping

Contributions

Collected Datasets

Research Methodology

Investigations & Findings

Implications & Impact

3

Software development has a

supply chain

4

Depends on third-party

components (packages, libraries)

85% - 97% of enterprise software

code base from OS components

Context

Background

5

Software Supply Chain

Application

(Software)

Components

Transitive

Dependencies

Background

6

Software Supply Chain Attack

Malicious Code

(Vulnerability)

Background

7

Vulnerability

What is a security vulnerability ?

• Security defects

• Security bugs

• Software weaknesses

• Etc.

"A software vulnerability is an instance of a flaw, caused by a mistake in the design,

development, or configuration of software such that it can be exploited to violate some explicit

or implicit security policies.“

According to Ghaffarian and Shahriari [1] :

Background

8

Software Supply Chain Attack

What is a Software Supply Chain Attack (SSCA)?

A technique in which an adversary slips malicious code or

even a malicious component into a trusted piece of

software or hardware. By compromising a single supplier,

attackers can hijack the distribution system to turn any

application into Trojan horse [2].

Data Exfiltration:
SolarWinds Attack

• In December 2020, Russian hackers from the Foreign

Intelligence Service (SVR) hacked SolarWinds.

• In October 2019, they planted malicious code in updates

of the network monitoring tool Orion to plant a backdoor.

• 18 000 users were affected, and at least nine US federal

agencies got infiltrated (e.g., NASA, the State Department,

the Department of Defense, and the Department of Justice).

9

Remote Code Execution:
Log4Shell Attack

• On December 2021, a vulnerability with 10/10 severity

was discovered in Apache Log4j library.

• Vulnerability consists of abusing the feature of specifying

code through a log message and allowing the injected

code to be executed remotely on a targeted server.

• Exploits: Cryptomining, Reverse Shell to bypass firewalls,

turn targeted server into a botnet, data exfiltration, etc.

10

Research Problems
Handling Software Supply Chain Attacks

Software supply chain is

extensive, and software is

updated and patched on a

regular basis

The lacks and limitations

of the state-of-the-art

(Accuracy & Time)

Manual analysis

performed by experts

require a lot of time and

effort

The fix delay that expands

the window of exposure

causing more casualties

11

Scope

12

SCA Tools & Dependabot

Software Composition Analysis Tools

Dependabot

Tools that identify the open-source software in a codebase in order to evaluate security,

license compliance, and code quality. The inspection concerns different components and

packages against security-related databases (e.g., NVD) that contain information about

common and known vulnerabilities.

Automated tool that keeps dependencies secure and up-to-date by managing

dependency updates, scanning third party vulnerabilities and sending security alerts.

It was released on May 27, 2017, and then, it got acquired by GitHub on May 2019. It

currently supports 15 different programming languages.

Scope

13

SCA Tools & Dependabot

Dependabot

Overview of Dependabot working process

https://github.com/dependabot/dependabot-core

01 02 03 04

14

Research Questions

Dependabot

popularity

• Level of popularity

• Popularity reasons

Vulnerabilities in

dependencies

• Patterns of

developers’ practices

and techniques

Security PRs

management

• Receptiveness and

responsiveness

• Threat lifetime & fix

delay

• Most exploited

vulnerabilities

Merge decision &

Merge speed

• Factors correlating

with the acceptance

and fast merges

Scope of study

Collected Datasets

15

GitHub-Miner : dataset collection pipeline

Data collection pipeline for GitHub-Miner

Collected Datasets

16

Dataset description

Dataset 1

Dependency Update :

6 573 489 PR-related issues

created from 26/05/2017

to 15/06/2021 (63 Gb).

Dataset 2

Dependabot Security PRs :

384 764 pull requests created

from 26/05/2017 to

15/06/2021 (4.34 Gb).

Dataset 3

Manual Security PRs :

100 102 pull requests

created from 26/05/2017

to 15/06/2021 (1.66 Gb).

Research Methodology

17

To what extent is Dependabot adopted ?

Why is Dependabot more adopted than other tools ?

Level of popularity

• Using Dataset (1) - Dependency Update -

• Quantitative analysis of the total number of PRs created by bots and users

• Comparative analysis of the history and evolution of dependency management activity

RQ1

Research Methodology

18

To what extent is Dependabot adopted ?

Why is Dependabot more adopted than other tools ?

Popularity reasons

• Survey with project owners from GitHub, randomly selected from Dataset (1)

• Content : demographic profile and experience + dependency management tools and their features

+ challenges encountered with possible improvements

• Response rate of 13% (22/164)

RQ1

Research Methodology

19

What do developers do to handle security vulnerabilities in dependencies ?

Patterns of developers' practices & techniques

• Using Dataset (2) & (3) – Security PRs –

• Representative sample : more than 10% of total PRs (50,000) using Stratified Random Sampling

• Manual qualitative analysis of PR commits, patches, & comments

RQ2

Research Methodology

20

How fast are security pull requests handled ?

How long do vulnerabilities remain unpatched ?

Receptiveness and responsiveness

• Using Dataset (2) & (3) – Security PRs –

• Comparative analysis of the distribution of PRs

• Manual analysis for the reasons of closing and not handling security PRs

• Measure merge speed & close speed of PRs for Dependabot and developers

RQ3

Research Methodology

21

How fast are security pull requests handled ?

How long do vulnerabilities remain unpatched ?

Threat lifetime & fix delay

RQ3

Timeline for vulnerabilities discovery time and fix time; (1) Patch disclosed after adding the vulnerable

dependency, (2) Patch disclosed before adding the vulnerable dependency

Research Methodology

22

How fast are security pull requests handled ?

How long do vulnerabilities remain unpatched ?

Most exploited vulnerabilities

• Using Dataset sample of RQ2 (50,000)

• Quantitative analysis of the Hidden Threat Lifetime by vulnerability type

RQ3

Research Methodology

23

What factors influence the decision and the time to accept security PRs ?

Factors correlating with the acceptance and fast merges

• Using Dataset (2) & (3) – Security PRs –

• Data pre-processing :

▪ Cross-correlation analysis (redundancy, independence, significance)

▪ Outlier filter

• Statistical analysis on the merge decision and the merge speed

• Survey with developers, randomly selected from Dataset (2) (response rate 14% = 18/128)

RQ4

Research Methodology

24

What factors influence the decision and the time to accept security PRs ?

RQ4

Investigations & Findings

25

RQ1.1. Level of popularity

RQ1. Dependabot popularity

• Dependabot dominates the dependency

management activity, with more than 70% PRs

• 84% of the total PRs in the dataset are handled

• Auto-generated PRs (90%) vs. Manual PRs (10%)

Pull Request distribution per author

Investigations & Findings

26

RQ1.1. Level of popularity

RQ1. Dependabot popularity

• Dependabot dominates the dependency

management activity, with more than 70% PRs

• 84% of the total PRs in the dataset are handled

• Auto-generated PRs (90%) vs. Manual PRs (10%)

• Dependabot increasingly getting more popular,

esp. from 2018 when most PLs were supported

• Dependabot creates on avg. 68,784 new PRs per

month

Pull Request creation history per author

Investigations & Findings

27

RQ1.2. Popularity reasons

RQ1. Dependabot popularity

• Main features :

✓ Efficiency : adoption of automated dependency

management

✓ Accessibility : free tool + PLs

✓ Adaptivity : CI/CD pipeline + modern software

development

✓ Comprehensibility and support

Selection rate of popularity reasons

Investigations & Findings

28

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

Investigations & Findings

29

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Investigations & Findings

30

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

A
u

to
A

u
to

Investigations & Findings

31

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

A
u

to
M

a
n

u
a
l

Investigations & Findings

32

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

Cherry-

picking &

Combining

A
u

to
M

a
n

u
a
l

Investigations & Findings

33

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

Cherry-

picking &

Combining

Manual Inspection

Investigations & Findings

34

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

Cherry-

picking &

Combining

Manual Inspection

Registry

reports (audit)

M
a
n

u
a
l

M
a
n

u
a
l

Investigations & Findings

35

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

Cherry-

picking &

Combining

Manual Inspection

Registry

reports (audit)

Developer's

knowledge

M
a
n

u
a
l

M
a
n

u
a
l

Investigations & Findings

36

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

Strategies :

Identify & Fix

SCA Tools

Auto-merge

(CI/CD)

Manual

Review &

Merge

(breaking

changes)

Cherry-

picking &

Combining

Manual Inspection

Registry

reports (audit)

Developer's

knowledge

Automated

PRs for

patch

generation

M
a
n

u
a
l

A
u

to

Investigations & Findings

37

RQ2. Patterns of developers' practices & techniques

RQ2. Vulnerabilities in dependencies

• Common actions on patches :

1. Dependency upgrade (version, hash, transitive dependencies)

2. Selective Dependency Resolution (version pinning, no ’^’, no ’∼’)

3. Dependency change (absence of new versions)

4. Dependency downgrade (vulnerability-free)

5. Dependency removal (bloated dependencies)

Investigations & Findings

38

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Devs are highly receptive to manual PRs; Close due

to test runs and project requirement

Distribution of security PRs per state and author

Developers

Investigations & Findings

39

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

Distribution of security PRs per state and author

Developers

• Devs are highly receptive to manual PRs; Close due

to test runs and project requirement

• Contributors have significant impact on security fixes

(Chi-squared test)

Investigations & Findings

40

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Devs are highly receptive to manual PRs; Close due

to test runs and project requirement

• Contributors have significant impact on security fixes

(Chi-squared test)

• Merged PRs : 71% (66735/94455) manually merged,

29% auto-merged

Distribution of security PRs per state and author

Dependabot

Developers

Investigations & Findings

41

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Devs are highly receptive to manual PRs; Close due

to test runs and project requirement

• Contributors have significant impact on security fixes

(Chi-squared test)

• Merged PRs : 71% (66735/94455) manually merged,

29% auto-merged

• Closed PRs : 8% manually closed (breaking changes,

test runs fail, core dependents), 92% auto-closed

(superseded, dependency updated or removed, peer

requirement, & update errors)

Distribution of security PRs per state and author

Dependabot

Developers

Investigations & Findings

42

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Open PRs due to :

➢ Low priority for the update

➢ Not enough time for review & check

➢ Low severity and impact of vulnerability

➢ High frequency of updates

➢ Manual effort esp. when multiple repos

use same dependency

Dependabot PRs distribution per state

Dependabot

Auto-merged

Manually merged

Auto-closed

Manually closed

Open

Investigations & Findings

43

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Dependabot PRs mostly merged in less

than 24 hours (median: 1 day, mean: 16)

but take longer to be closed (median: 26,

mean: 61 days)

• Manual PRs merged within few hours

(median: 0 day, mean: 7 days) and take

longer to be closed (median: 2, mean: 48)

Violin-plot for the time to handle security PRs

Investigations & Findings

44

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• PRs merged much faster than they are closed

• Dependabot’s auto-merge performs best within

few minutes (median: 0, mean: 5.7), developers

merge their PRs faster (median: 0, mean: 7.3) than

Dependabot’s (median: 2, mean: 20)

• Developers’ PRs closed faster (median: 2, mean:

48), and Dependabot’s take longer whether

automatically (median: 24, mean: 59) or manually

(median: 36, mean: 82)

Box-plot for merge & close speed of security PRs

Investigations & Findings

45

RQ3.1. Receptiveness and responsiveness

RQ3. Security PRs management

• Close speed initially high (esp. developers’),

then decreases over time

• Merge speed has weak variations for

Dependabot & developers

Box-plot for the evolution of merge & close speed

Investigations & Findings

46

RQ3.2. Threat lifetime & fix delay

RQ3. Security PRs management

• Threats persist unknown in GitHub for 512

days on avg. (median: 419 days)

Huge window of exposure !

• Patches disclosed after 362 days on avg.

(median: 305 days) from 0-day (manual

expert inspection)

• Small gap between two metrics : fixes are

made quickly in GitHub soon after

disclosing patches in CVE databases
Violin-plot for threat lifetime & fix delay

Investigations & Findings

47

RQ3.2. Threat lifetime & fix delay

RQ3. Security PRs management

• Vulnerabilities with serious severity levels

are the most occurring on GitHub

• Vulnerabilities with highest severity levels

(critical) have quickest fixes (priority)

Threat lifetime based on the severity level

Investigations & Findings

48

RQ3.2. Threat lifetime & fix delay

RQ3. Security PRs management

• # PRs decreases as the update level gets higher

➢ Most fixes are performed on patch level

• ATL increases as the update level gets higher

➢ Major updates take the longest to be

released (huge changes)

Threat lifetime based on the update level

Investigations & Findings

49

RQ3.3. Most exploited vulnerabilities

RQ3. Security PRs management

• Most common : Prototype Pollution

➢ Simple logic, targets npm, leads to

subsequent attacks

• Highest ATL : Cross-Site Scripting (XSS)

➢ Harder to manually inspect, time to

implement fixes

• Lowest ATL : Usage of Broken / Risky

Cryptographic Algorithms

➢ Easier to pinpoint, predefined fixes

Most exploited vulnerabilities

Investigations & Findings

50

RQ4. Factors correlating with the acceptance and fast merges

RQ4. Merge decision & Merge speed

❑Merge decision : Acceptance supported by

• Descriptions of small size (# comments, discussion) =>

Dependabot communication, more changes

• Collaboration (# assignees)

• Less changes (# additions, # changed files) => breaking

changes, refactoring effort + tests + reviews

• Repository characteristics (activity, maturity)

• Update level & severity Tests results on merge decision for Dataset (2)

Investigations & Findings

51

RQ4. Factors correlating with the acceptance and fast merges

RQ4. Merge decision & Merge speed

❑Merge decision : Acceptance supported by

• Descriptions of small size (# comments, discussion) =>

Dependabot communication, more changes

• Collaboration (# assignees)

• Less changes (# additions, # changed files) => breaking

changes, refactoring effort + tests + reviews

• Repository characteristics (activity, maturity)

• Update level & severity

• Developer’s experience, contribution, & association

(owner vs. contributor)

Tests results on merge decision for Dataset (3)

Investigations & Findings

52

RQ4. Factors correlating with the acceptance and fast merges

RQ4. Merge decision & Merge speed

❑Merge speed : Fast merge supported by

• PR changes (# commits, # changed files) => code reviews,

test runs, refactoring effort

• Efficient communication (# comments, discussion) =>

Dependabot actions, developer’s feedback

• Project characteristics (maturity, size) => adaptability,

more contributors

• Update level & severity
Tests results on merge speed for Dataset (2)

Investigations & Findings

53

RQ4. Factors correlating with the acceptance and fast merges

RQ4. Merge decision & Merge speed

❑Merge speed : Fast merge supported by

• PR changes (# commits, # changed files) => code reviews,

test runs, refactoring effort

• Efficient communication (# comments, discussion) =>

Dependabot actions, developer’s feedback

• Project characteristics (maturity, size) => adaptability,

more contributors

• Update level & severity

• Developer’s workload, contribution & association
Tests results on merge speed for Dataset (3)

Implications

Tool Designers

Concerns Alternatives

➢ Overwhelming alerts, pollute project history &

notifications

➢ Breaking changes, manual effort

➢ Frequency of updates, time to merge

➢ Threat lifetime, unknown vulnerabilities

➢ Tool adoption

✓ Improve bot-human interaction (combine PRs w/ edits &

selection)

✓ Locate code fragments that require refactoring

✓ Support auto-merge w/ restriction options (update level)

✓ Effective & efficient tools that rely on available data

✓ Features : efficiency (configuration + integration),

accessibility, adaptivity, comprehensibility & support

Implications

Repository Owners / Maintainers

Concerns Alternatives

➢ Not using tools / bots to handle vulnerabilities in

dependencies

➢ Fix delay after discovering vulnerabilities

➢ Negative hidden threat lifetime

➢ Common attacks

✓ Maintain regular level of awareness (inspection & audits,

security reports, vulnerability DBs, advisories, etc.)

✓ Narrow window of exposure (e.g., suggest substitute

packages in absence of safer versions)

✓ React to fix disclosures (disable/remove vulnerable

versions, inform users about threats during installation)

✓ List of most exploited vulnerabilities (e.g., security

evaluation like OWASP Top Ten)

Implications

Developers

Concerns Alternatives

➢ Factors impact handling security PRs

➢ Auto-closed PRs (superseded)

➢ Bloated dependencies

✓ Be concise and make a long story short (consider

description size and # comments)

✓ React to open PRs and not ignore them for too long

✓ Keep dependency graph clean from redundant and

unused dependencies

Dataset & Reference Dataset of 9,288,808 PRs-related issues in

979,179 projects for more than 10 PLs, for

general purposes (security, pull-based, etc.)

Contributions

57

Data Collection Pipeline Pipeline to extract issues, pull requests,

repositories, commits and users’ data from

GitHub

Knowledge & Insights Adoption of bots in fixing vulnerabilities in

dependencies, developers’ patterns to

handle SSCAs, threat lifetime, &

management of security PRs

Thank You !
Any Questions ?

59

Bibliography

• [1] Ghaffarian, Seyed Mohammad, and Hamid Reza Shahriari. "Software vulnerability analysis and discovery using machine-learning and data-mining techniques: A survey." ACM Computing Surveys (CSUR) 50, no. 4 (2017): 1-36.

• [2] GREENBERG, A., 2021. What Is a Supply Chain Attack?. [online] Wired. Available at: https://www.wired.com/story/hacker-lexicon-what-is-a-supply-chain-attack [Accessed 6 July 2021].

• [3] Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. "code2vec: Learning distributed representations of code." Proceedings of the ACM on Programming Languages 3, no. POPL (2019): 1-29.

• [4] Fang, Chunrong, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. "Functional code clone detection with syntax and semantics fusion learning." In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 516-

527. 2020.

• [5] Sachdev, Saksham, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. "Retrieval on source code: a neural code search." In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages,

pp. 31-41. 2018.

• [6] Hashemi, Hashem, and Ali Hamzeh. "Visual malware detection using local malicious pattern." Journal of Computer Virology and Hacking Techniques 15, no. 1 (2019): 1-14.

• [7] Keller, Patrick, Laura Plein, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. "What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning." arXiv preprint arXiv:2002.02650 (2020).

• [8] Ragkhitwetsagul, Chaiyong, Jens Krinke, and Bruno Marnette. "A picture is worth a thousand words: Code clone detection based on image similarity." In 2018 IEEE 12th International workshop on software clones (IWSC), pp. 44-50. IEEE, 2018.

• [9] Chess, B., F. DeQuan Lee, and J. West. "Attacking the build through cross-build injection: how your build process can open the gates to a trojan horse." (2007): 24-25.

• [10] Eggers, Shannon. "A novel approach for analyzing the nuclear supply chain cyber-attack surface." Nuclear Engineering and Technology 53, no. 3 (2021): 879-887.

• [11] Ohm, Marc, Henrik Plate, Arnold Sykosch, and Michael Meier. "Backstabber’s knife collection: A review of open source software supply chain attacks." In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp.

23-43. Springer, Cham, 2020.

• [12] Duan, Ruian, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformaggio, and Wenke Lee. "Measuring and preventing supply chain attacks on package managers." (2020).

• [13] Vu, Duc Ly, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta. "Towards using source code repositories to identify software supply chain attacks." In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications

Security, pp. 2093-2095. 2020.

• [14] Ohm, Marc, Arnold Sykosch, and Michael Meier. "Towards detection of software supply chain attacks by forensic artifacts." In Proceedings of the 15th international conference on availability, reliability and security, pp. 1-6. 2020.

• [15] Garrett, Kalil, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. "Detecting suspicious package updates." In 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 13-16.

IEEE, 2019.

• [16] Ohm, Marc, Lukas Kempf, Felix Boes, and Michael Meier. "If You've Seen One, You've Seen Them All: Leveraging AST Clustering Using MCL to Mimic Expertise to Detect Software Supply Chain Attacks." arXiv e-prints (2020): arXiv-2011.

• [17] Lin, Guanjun, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. "POSTER: Vulnerability discovery with function representation learning from unlabeled projects." In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,

pp. 2539-2541. 2017.

• [18] Russell, Rebecca, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley. "Automated vulnerability detection in source code using deep representation learning." In 2018 17th IEEE international conference

on machine learning and applications (ICMLA), pp. 757-762. IEEE, 2018.

• [19] Lin, Guanjun, Wei Xiao, Jun Zhang, and Yang Xiang. "Deep learning-based vulnerable function detection: A benchmark." In International Conference on Information and Communications Security, pp. 219-232. Springer, Cham, 2019.

• [20] Zhou, Yaqin, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. "Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks." Advances in neural information processing systems 32 (2019).

• [21] Wang, Huanting, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. "Combining graph-based learning with automated data collection for code vulnerability detection." IEEE Transactions on

Information Forensics and Security 16 (2020): 1943-1958.

https://www.wired.com/story/hacker-lexicon-what-is-a-supply-chain-attack

Appendix

60

Software Supply Chain Attack

What is a Software Supply Chain Attack (SSCA)?

A technique in which an adversary slips malicious code or even a malicious component into a

trusted piece of software or hardware. By compromising a single supplier, attackers can hijack the

distribution system to turn any application into Trojan horse [2].

▪ Attack vectors (Strategies)

▪ Purpose

- Social engineering

- Typo-squatting (E.g., jeIlyfish and jellyfish)

- Combo-squatting (E.g., python-ftp and pyftpdlib)

- Etc.

- Stealing credentials

- Data exfiltration

- Cryptocurrency mining

- Etc.

Appendix

61

Software Supply Chain Life Cycle

https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/

