UNIVERSITE DU

O 0 0O
Dependabot and Security Pull Requests:
A Large Empirical Study
® 0 o
CYBERUS Summer School 2023
Realized by : Under the supervision of :
e Mr REBATCHI Hocine * Prof. BISSYANDE Tegawendé

(SnT - University of Luxembourg)

* Prof. MOHA Naouel (ETS)
04/07/2023

Hocine REBATCHI

PhD Student (Applied Research profile)

Software Software

Engineering Security

« Software Engineer + Master Degree : Fall 2015 - Fall 2020
* PhD Student : Winter 2021 - Fall 2024

https://www.facebook.com/hocine.rebatchi/
https://twitter.com/hocine_rebt
https://www.linkedin.com/in/hocine-rebatchi-4a38a1101/

Table of

Problem Scoping

Collected Datasets

Research Methodology

Investigations & Findings

Contributions

Context

Software development has a Depends on third-party 85% - 97% of enterprise software
supply chain components (packages, libraries) code base from OS components

‘ BaCkgrOUnd

l ‘ Software Supply Chain

et 0T
Dependencies

‘ e
Components

AppIiCatiOn

(SOftWa re)

Malicious Code
(Vulnerability)

*
"
*

What is a security vulnerability ?

 Security defects
 Security bugs
« Software weaknesses

e Etc.

According to Ghaffarian and Shahriari [1] :

"A software vulnerability is an instance of a flaw, caused by a mistake in the design,
development, or configuration of software such that it can be exploited to violate some explicit

or implicit security policies.”

' ‘ Background
@

Software Supply Chain Attack

What is a Software Supply Chain Attack (SSCA)?

A technique in which an adversary slips malicious code or
even a malicious component into a trusted piece of
software or hardware. By compromising a single supplier,
attackers can hijack the distribution system to turn any
application into Trojan horse [2].

Data Exfiltration:
SolarWinds Attack

* In December 2020, Russian hackers from the Foreign

Intelligence Service (SVR) hacked SolarWinds.

* In October 2019, they planted malicious code in updates

of the network monitoring tool Orion to plant a backdoor.

* 18 000 users were affected, and at least nine US federal
agencies got infiltrated (e.g., NASA, the State Department,

the Department of Defense, and the Department of Justice).

CVE-2021-44228

LOG4SHELL

Log4Shell Attack ” e
g ATTACKERS Q

Exploit-String may be in URI,
User-Agent, Referer, POST-Vars,

* On December 2021, a vulnerability with 10/10 severity GET-Vars

was discovered in Apache Log4j library. | b SERVER
J receives the string and passes

Vulnerability consists of abusing the feature of specifying

to log4j module

code through a log message and allowing the injected

code to be executed remotely on a targeted server. LOG4J

processes the string

Exploits: Cryptomining, Reverse Shell to bypass firewalls, queries malicious server

turn targeted server into a botnet, data exfiltration, etc.

0\
"~/

| ATTACKED
/ SERVER
responds with information about

malicious JAVA class which gets

installed
. J

' Research Problems
@

Handling Software Supply Chain Attacks

Software supply chain is The lacks and limitations Manual analysis The fix delay that expands
extensive, and software is of the state-of-the-art performed by experts the window of exposure
updated and patched on a (Accuracy & Time) require a lot of time and causing more casualties
regular basis effort

Software Composition Analysis Tools

Tools that identify the open-source software in a codebase in order to evaluate security,
license compliance, and code quality. The inspection concerns different components and

packages against security-related databases (e.g., NVD) that contain information about
common and known vulnerabilities.

Dependabot

Automated tool that keeps dependencies secure and up-to-date by managing
dependency updates, scanning third party vulnerabilities and sending security alerts.

It was released on May 27, 2017, and then, it got acquired by GitHub on May 2019. It
currently supports 15 different programming languages.

Dependabot

VO_,

GitHub / GitLab
Project

Fetch
Dependency File

(D

—- = —P

packge.json

Extract
Dependencies

Registries

L

Dependencies

Check Updates

Overview of Dependabot working process

https://github.com/dependabot/dependabot-core

Update
Dependencies

rubyzip (1.2.3)
rubyzip (1.3.0)

Dependency
updated

0

Dependabot

oopularity

* Level of popularity

 Popularity reasons

02

Vulnerabilities in
dependencies

e Patterns of

developers' practices
and techniques

Research Questions

Scope of study

03 0Z

Security PRs Merge decision &

management Merge speed

« Receptiveness and
responsiveness

 Factors correlating
with the acceptance

« Threat lifetime & fix el S melges

delay

* Most exploited
vulnerabilities

Ej

GitHub Search
Query

Collected Datasets

GitHub-Miner : dataset collection pipeline

Search
Sampling

)

Outlier Query Issues
Filtering Adjustment Collection

[, —

Dates

Filtered Dates Fetched Dates

Data collection pipeline for GitHub-Miner

. ,’ \ 7 .
’ N iz‘ , . P ~ Pid
\."".‘ 'p \‘. ’ \“‘ JSON -
B GEE "' - {i}

Issues

Data
Extraction

’

4

!
/

.

csv

Users

Y

SV

Repositories

{

csv

Pull Requests

.

sV

Commits

' Collected Datasets

Dataset description
Dataset 1 Dataset 2 Dataset 3
Dependency Update : Dependabot Security PRs : Manual Security PRs :
6 573 489 PR-related issues 384 764 pull requests created 100 102 pull requests
created from 26/05/2017 from 26/05/2017 to created from 26/05/2017

to 15/06/2021 (63 Gb). 15/06/2021 (4.34 GDb). to 15/06/2021 (1.66 Gb).

"‘ Research Methodology
@ To what extent is Dependabot adopted ?

Level of popularity

« Using Dataset (1) - Dependency Update -
* Quantitative analysis of the total number of PRs created by bots and users

- Comparative analysis of the history and evolution of dependency management activity

' ‘ Research Methodology
L

@

Why is Dependabot more adopted than other tools ?

Popularity reasons

« Survey with project owners from GitHub, randomly selected from Dataset (1)

« Content : demographic profile and experience + dependency management tools and their features
+ challenges encountered with possible improvements

« Response rate of 13% (22/164)

"‘ Research Methodology
@ What do developers do to handle security vulnerabilities in dependencies ?

Patterns of developers' practices & techniques

* Using Dataset (2) & (3) — Security PRs —
« Representative sample : more than 10% of total PRs (50,000) using Stratified Random Sampling

- Manual qualitative analysis of PR commits, patches, & comments

"‘ Research Methodology
@ How fast are security pull requests handled ?

Receptiveness and responsiveness

Using Dataset (2) & (3) — Security PRs —

Comparative analysis of the distribution of PRs

Manual analysis for the reasons of closing and not handling security PRs

Measure merge speed & close speed of PRs for Dependabot and developers

' ‘ Research Methodology
L

How long do vulnerabilities remain unpatched ?

Threat lifetime & fix delay

O day Fix disclosure PR creation PR handled Fix disclosure 0 day PR creation PR handled
Tl T
0 (X) () ko X (i) () ko
o Oty topatchdiscosure o Odytopatchdichsure j L 5
: | Threat
Hidden Threat Lifetime 5 Response Time i Lifetime ! Response Time
T EERASEREEE » -———- B A »>
(1) (2)

Timeline for vulnerabillities discovery time and fix time; (1) Patch disclosed after adding the vulnerable
dependency, (2) Patch disclosed before adding the vulnerable dependency ‘

' ‘ Research Methodology
‘ B

@

How long do vulnerabilities remain unpatched ?

Most exploited vulnerabilities

« Using Dataset sample of RQ2 (50,000)
« Quantitative analysis of the Hidden Threat Lifetime by vulnerability type

"‘ Research Methodology
@ What factors influence the decision and the time to accept security PRs ?

Factors correlating with the acceptance and fast merges

Using Dataset (2) & (3) — Security PRs —

Data pre-processing :
= Cross-correlation analysis (redundancy, independence, significance)
= Qutlier filter

Statistical analysis on the merge decision and the merge speed

Survey with developers, randomly selected from Dataset (2) (response rate 14% = 18/128)

Research Methodology

What factors influence the decision and the time to accept security PRs ?

Category Feature Description

age Age of the repository from its creation date to the PR creation time (in days)

recent_activity Time interval between the last update in the repository and the PR creation time (in days)
Repository size Size of the repository (in Kb)

watchers Number of GitHub users that register to watch the repository for new updates notifications

open_issues Number of the total open issues that are registered and not handled in the repository

assignees Number of GitHub users that are assigned to the issues related to the PR

requested_reviewers Number of GitHub users that are requested to review the code in the PR

commits Number of commits that perform the changes suggested in the PR

additions Mumber of lines of code added in the commits of the PR
Pull Request . - . . .

deletions Mumber of lines of code deleted in the commits of the PR

changed_files Number of files changed by the commits of the PR

comments Number of comments in the discussion history of the PR

discussion_size Size of the body of the PR (Le., words count)

experience Time interval between the creation date of the user account and the PR creation time
User author_association Association of the GitHub user to the project repository (iLe., owner, contributor)

followers Mumber of the GitHub user followers

public_repos_gists Number of public repositories and gists created by the GitHub user

patch_level Specification of the version update of the dependency in the PR (i.e., patch, minor, major)
Dependency severity Level of severity for the dependency vulnerability (1e, low, moderate, high, critical)

iz_bloated Indicator if the dependency is used in the repository or bloated (not used)

' ‘ Investigations & Findings
@

RQ1. Dependabot popularity

RQ1.1. Level of popularity

77 Handled
L. Open

- Dependabot dominates the dependency gthub-actions
management activity, with more than 70% PRs fependencie

dotnet-maestro

 84% of the total PRs in the dataset are handled depfy
* Auto-generated PRs (90%) vs. Manual PRs (10%) .

Author

User

renovate

dependabot

dependabot-preview

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Pull Requests (x10°)

Pull Request distribution per author

' Investigations & Findings
®e

RQ1. Dependabot popularity

RQ1.1. Level of popularity

40
dependabot-preview
1 - dependabot
) 35 4-—-— renovate —
» Dependabot dominates the dependency - User /
L . 04 greenkzepfer
management activity, with more than 70% PRs | ool /
o5 4" ° - dependencies /

« 84% of the total PRs in the dataset are handled

— github-actions /
20
15 //

10 / —
_____ -
5 S Lt e
0" ’_-..
.-—‘—.J‘-."'.
. - ‘:-.-—: '_‘/‘-— -

— - T - am m -
0 ‘-&ﬁ-:-.-‘mﬂr’-ﬂ A PP PP PRI besls

* Auto-generated PRs (90%) vs. Manual PRs (10%)

- Dependabot increasingly getting more popular,
esp. from 2018 when most PLs were supported

Cumulative number of PRs (x10°)

« Dependabot creates on avg. 68,784 new PRs per
month

2017-10 2018-04 2018-10 20198-04 2019-10 2020-04 2020-10 2021-04

Pull Request creation history per author

' ‘ Investigations & Findings
@

RQ1. Dependabot popularity

RQ1.2. Popularity reasons
90% 86%
80%
* Main features : o 68%
v' Efficiency : adoption of automated dependency 60%
management 50% 46%
on one 40%
v" Accessibility : free tool + PLs 32%
30%
v Adaptivity : Cl/CD pipeline + modern software 20%
development 10%
[] oo 0%
v Compl"EhenSIblllty and Support Ease of Accessibility Ease of Availability of
integration into (free tool) configuration documentation
GitHub projects into CI/CD
pipeline

Selection rate of popularity reasons

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

< RQ2. Patterns of developers' practices & techniques

- D

Strategies :
Identify & Fix

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

< RQ2. Patterns of developers' practices & techniques

- D

Strategies :
Identify & Fix

e N

SCA Tools

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

< RQ2. Patterns of developers' practices & techniques

- D

Strategies :
Identify & Fix

- /
.) 4 R
>
SCA Tools =
O
N / . /
4 D - p
Auto-merge :(C>
(Cl/CD) 8

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

Strategies :
Identify & Fix

o /
a N -~ B
>
SCA Tools =
@
N Y, \ J
4 N ([D . ™
Manual Z
Review & Q
Auto-merge Merge =
Helelz) (breaking <
changes) Q

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

Strategies :
Identify & Fix

- /
4 N ~ B
JC>
SCA Tools =
N J \ /
4 Y4 aYa D a4 N\
Manual Z
Auto-merge Review & Cherry- Q)
(CI/CD)g Merge picking &)
(breaking Combining -
changes) Q

_ VAN VAN Y, \

' ‘ Investlgatlons & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

Strategies :
Identify & Fix

. /
4 N O 2
SCA Tools Manual Inspection
o AN v
. D aYa A
Manual
Auto-merge Review & Cherry-
(CI/CD)g Merge picking &
(breaking Combining
changes)

' ‘ Investigations & Findings

RQ2. Patterns of developers' practices & techniques

RQZ2. Vulnerabilities in dependencies

/
Strategies :
Identify & Fix
-
‘ N [
SCA Tools Manual Inspection
o RN
4 ™ N ™
Manual
Review & Cherry- .
Auto-merge . e Registry
Merge picking & .
N (breaking Combining reports (audit)
changes)
- AN /

4)
<
Q
-
-
=
- /
4)
<
Q)
-
-
Q
-

' ‘ Investigations & Findings

RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

/
Strategies :
Identify & Fix
-
‘ N [
SCA Tools Manual Inspection
o RN
e o e >
Manual
Auto-merge R‘Ie\;lne(:"ge& pfcl;(f:lg-& Registry Developer's
(Cl/CD) (breaking Combining reports (audit) knowledge
changes)
- AN /

4)
<
Q
-
-
=
- /
4)
<
Q)
-
-
Q
-

' ‘ Investigations & Findings
@

RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

Strategies :
Identify & Fix

N v
4 N [N D N
Automated <
. PRs for Q
SCA Tools Manual Inspection patch)
-
generation QL
N J NS /
e N N N [aYa N 4 I
Manual
Auto-merge R‘Ie\;lne?ge& pfcl;j:‘rgy-& Registry Developer's :(C>
(Cl/CD) (breaking Combining reports (audit) knowledge 6"
changes)

_ L VAN VAN L Y, \

' ‘ Investigations & Findings

l ‘ RQZ2. Vulnerabilities in dependencies

RQ2. Patterns of developers' practices & techniques

« Common actions on patches :

1. Dependency upgrade (version, hash, transitive dependencies)
Selective Dependency Resolution (version pinning, no ‘A', no '~")

Dependency change (absence of new versions)

> W N

Dependency downgrade (vulnerability-free)

5. Dependency removal (bloated dependencies)

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

—

« Devs are highly receptive to manual PRs; Close due
Developers to test runs and project requirement Manual
Stabe Contributor Owner Total Dependabot
_ Merged 16530 4070 :20600 (T0%): 94455 (26%)
Closed 4447 911 5358 (18%) 163837 (45%)
Open 2052 1386 3438 (12%) 105364 (29%)
Total 23029 6367 29396 363656

Distribution of security PRs per state and author

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

—

« Devs are highly receptive to manual PRs; Close due
Developers to test runs and project requirement Manual

State _ Dependabot

- Contributors have significant impact on security fixes Contritnctor Owner Tntal
n | Merged 16530 4070:. 20600 (70%) 94455 (26%)
(Chi-squared test) Closed . 4447 911 5358 (18%) 163837 (45%)
Open | 2052 1386 3438 (12%) 105364 (29%)
Total 123029 6367 29396 363656

. .®
llllllllllllllllllllllllllllll

Distribution of security PRs per state and author

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

« Devs are highly receptive to manual PRs; Close due
to test runs and project requirement M

Developers State T Dwua_l T Dependabot
» Contributors have significant impact on security fixes onfributor ner o _
- : Merged 16530 4070 20600 (70%) : 94453 (26%)
- (Chi-squared test) Closed 4447 911 5358 (18%) 163837 (45%)
. Merged PRs : 71% (66735/94455) manually merged, OPe® 2052 1586 3438 (12%) 105364 (29%)
Total 23029 6367 29396 363656

Distribution of security PRs per state and author

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

« Devs are highly receptive to manual PRs; Close due
to test runs and project requirement M
Developers State T Dwua.l T Dependabot
- Contributors have significant impact on security fixes ontributor thwner ota
- , Merged 16530 4070 20600 (70%) 94455 (26%)
— (Chisquared tes Closed aa7 o1 5358 (18%) {16337 (45%)
. Merged PRs : 71% (66735/94455) manually merged, OPe® 2052 1586 3438 (12%) 105364 (29%)
Total 23029 6367 29396 363656
* Closed PRs : 8% manually closed (breaking changes,
— test runs fail, core dependents), 92% auto-closed Distribution of security PRs per state and author

(superseded, dependency updated or removed, peer
requirement, & update errors)

' ‘ Investigations & Findings

-
g

Dependabot PRs distribution per state

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

promm—

* Open PRs due to:
> Low priority for the update

Auto-merged

Not enough time for review & check
® Manually merged

Low severity and impact of vulnerability = Auto-closed

Dependabot

® Manually closed

High frequency of updates = Open

V V V V

Manual effort esp. when multiple repos
use same dependency

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

 Dependabot PRs mostly merged in less
than 24 hours (median: 1 day, mean: 16)
but take longer to be closed (median: 26,
mean: 61 days)

s1adojanag

Closed Merged

 Manual PRs merged within few hours
(median: 0 day, mean: 7 days) and take
longer to be closed (median: 2, mean: 48)

10qepuadaq

=

Closed Merged

v

-10

T T T T ' | ' | '
200 300 400 500 600 700

F
*f

F_
>—

PR Response Time (days)

Violin-plot for the time to handle security PRs ‘ G

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.1. Receptiveness and responsiveness

Merged

W Closed Dependabot Developers
« PRs merged much faster than they are closed -
« Dependabot’s auto-merge performs best within R o
few minutes (median: 0, mean: 5.7), developers g |
merge their PRs faster (median: 0, mean: 7.3) than £ ‘
Dependabot’s (median: 2, mean: 20) 3 n
& 200 A a
« Developers’ PRs closed faster (median: 2, mean: @ . B
' ! ! |
48), and Dependabot's take longer whether = é
automatically (median: 24, mean: 59) or manually 7 <

(m ed ia n : 3 6’ m ea n : 82) - Auto-handled Manually handled Manual PRs

Count 27720 149446 66735 13715 20600 5358
Median 0 24 2 36 0 2

Box-plot for merge & close speed of security PRs ‘ @

iNgs

RQ3. Security PRs management

Investigations & Find

RQ3.1. Receptiveness and responsiveness

1000

T T T
o o o
(= (=) j=
© < o~

800 -

(shep) paadg abiapy sud Jogepuadag

80-+202
G0-LZoe
+0-LZ0E
E0-LZ0E
20-Lane
Lo-kzog
eL-zoe
H-0zne
DH-0Z08
B0-0Z0E
BO-0Z08
L0-0208
800208
500208
00208
E0-0Z08
Z0-0z08
L0-0z02
zI8loe
L6102
DI7610E
B0-6L0Z
806162
208102
506102
506102
$0BL0Z
£0-6102
z08L0z
L0602
zialoz
[§%:1114
01210z
B0-2Lez
80-8102
PLEIN S
802102
$O-81GZ
208102
Lo-aLoz

1000

800
600
400 4
200

1000

400
200

T
o
(=
©

800

(shep) paadg aso|n sHd jogepusdag

for

igh (esp. developers’),
weak variations

ially h

N

Close speed

then decreases over time
« Merge speed has

Dependabot & developers

1000

(sAep) peads aso|D sHd |enuepy

90-1202

200202

S0-2L02

90-1202
<0-1202
FO-HEQZ
£0r1Z02
2071202
Lo-1202
Z1-020Z
L1-0202
0L-0Z02

Box-plot for the evolution of merge & close speed ‘

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.2. Threat lifetime & fix delay

» Threats persist unknown in GitHub for 512
days on avg. (median: 419 days)

0-Day to Patch

==+ Huge window of exposure !

 Patches disclosed after 362 days on avg.
(median: 305 days) from 0-day (manual
expert inspection)

Hidden Threat
Lifetime

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000

« Small gap between two metrics : fixes are Duration (days)

made quickly in GitHub soon after

disclosing patches in CVE databases Violin-plot for threat lifetime & fix delay

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.2. Threat lifetime & fix delay

» Vulnerabilities with serious severity levels Severity Level #PRS Average Threat Lifetime (days)
are the most occurring on GitHub High a8/ 24
Moderate 2607 481
* Vulnerabilities with highest severity levels Critical 1653 427
(critical) have quickest fixes (priority) Medium 691 653
Low 502 595

Threat lifetime based on the severity level

' ‘ Investigations & Findings
@

RQ3. Security PRs management

RQ3.2. Threat lifetime & fix delay

« # PRs decreases as the update level gets higher m

> Most fixes are performed on patch level Patch 2316 135
« ATL increases as the update level gets higher Minor 4808 580
> Major updates take the longest to be Major 713 9257

released (huge changes)

Threat lifetime based on the update level

RQ3. Security PRs management

RQ3.3. Most exploited vulnerabilities

« Most common : Prototype Pollution

» Simple logic, targets npm, leads to
subsequent attacks

« Highest ATL : Cross-Site Scripting (XSS)

» Harder to manually inspect, time to
iImplement fixes

« Lowest ATL : Usage of Broken / Risky
Cryptographic Algorithms
> Easier to pinpoint, predefined fixes

Investigations & Findings

Vulnerability (Malicious Behavior) #PRs ATL
Prototype Pollution 4525 478
Regular Expression Denial of Service 1627 561
Denial of Service 539 543
Signature Malleabillity 435 499
ReDo5 and Prototype Pollution 430 353
XSS Vulnerability 299 629
Command Injection 280 284
Path Traversal 243 536
Arbitrary Code Execution 236 375
Resource Allocation Without Throttling 225 276
Using Risky Cryptographic Algorithm 181 197
Potential Memory Exposure 174 619
08 Command Injection 172 440
Eemote Memory Exposure 150 623
Arbitrary File Overwrite 143 442
Possible Information Leak / Session Hijack 126 464
Remote Code Execution 117 368

Most exploited vulnerabilities

Investigations & Findings

RQ4. Merge decision & Merge speed

RQ4. Factors correlating with the acceptance and fast merges

 Merge decision : Acceptance supported by

Descriptions of small size (# comments, discussion) =>
Dependabot communication, more changes

Collaboration (# assignees)

Less changes (# additions, # changed files) => breaking
changes, refactoring effort + tests + reviews

Repository characteristics (activity, maturity)

Update level & severity

Feature Coef. A p-value
comments -2.1931 -202.477 < 0.001
discussion_size -0.7786 -97.675 < 0.001
assignees 0.2704 42.805 < 0.001
additions -0.2018 -36.532 < 0.001
changed_files 0.1328 19.490 < 0.001
recent_activity -0.0782 -14.361 < 0.001
open_issues 0.0577 7.637 < 0.001
age 0.0193 3.492 < 0.001
commits -0.0125 -1.922 0.055
watchers -0.0104 -1.632 0.103
size -0.0039 -0.682 0.495
patch_level - 2105.170 < 0.001
severity - 224.866 < 0.001

Tests results on merge decision for Dataset (2)

Investigations & Findings

RQ4. Merge decision & Merge speed

RQ4. Factors correlating with the acceptance and fast merges

 Merge decision : Acceptance supported by

Descriptions of small size (# comments, discussion) =>
Dependabot communication, more changes

Collaboration (# assignees)

Less changes (# additions, # changed files) => breaking
changes, refactoring effort + tests + reviews

Repository characteristics (activity, maturity)
Update level & severity

Developer’s experience, contribution, & association
(owner vs. contributor)

Feature Coef. z p-value
recent_activity -14.0161 -65.587 < 0.001
assignees 0.4259 22.609 < 0.001
discussion_size -0.2729 -17.569 < 0.001
experience 0.2142 12.903 < 0.001
watchers -0.1185 -6.617 < 0.001
additions 0.0741 4417 < 0.001
public_repos_gists -0.0606 -3.708 < 0.001
age 0.0573 3.570 < 0.001
comments -0.0576 -3.568 < 0.001
size -0.0413 -2.824 0.005
changed_files 0.0202 1.165 0.244
followers -0.0137 -0.712 0.476
open_issues -0.0114 -0.676 0.499
commits 0.0070 0.396 0.692
author_association - 14792 < 0.001

Tests results on merge decision for Dataset (3)

Investigations & Findings

RQ4. Merge decision & Merge speed

RQ4. Factors correlating with the acceptance and fast merges

 Merge speed : Fast merge supported by

PR changes (# commits, # changed files) => code reviews,
test runs, refactoring effort

Efficient communication (# comments, discussion) =>
Dependabot actions, developer’s feedback

Project characteristics (maturity, size) => adaptability,
more contributors

Update level & severity

Feature Coef. z p-value
commits 1.6082 9.898 < 0.001
changed_files 1.2759 7.728 < 0.001
comments 0.7519 4.653 < 0.001
discussion_size 0.6749 4160 < 0.001
age -0.6404 -3.910 < 0.001
size -0.6161 -3.276 0.001
additions 0.2599 1.597 0.110
recent_activity -0.2039 -1.263 0.207
open_issues -0.2479 -1.085 0.278
assignees -0.1043 -0.647 0.517
watchers -0.0785 -0.383 0.701
severity 16.791 0.002
patch_level 8.498 0.014

Tests results on merge speed for Dataset (2)

Investigations & Findings

RQ4. Merge decision & Merge speed

RQ4. Factors correlating with the acceptance and fast merges

 Merge speed : Fast merge supported by

PR changes (# commits, # changed files) => code reviews,
test runs, refactoring effort

Efficient communication (#¥ comments, discussion) =>
Dependabot actions, developer’s feedback

Project characteristics (maturity, size) => adaptability,
more contributors

Update level & severity

Developer’s workload, contribution & association

Feature Coef. z p-value
comments 4.1299 18.532 < 0.001
public_repos_gists 3.4833 15.432 < 0.001
age 2.3858 10.257 < 0.001
commits 0.8149 3.610 < 0.001
discussion_size 0.7945 3.251 0.001
size -0.4939 -2.217 0.027
watchers -0.5248 -2.104 0.035
experience -0.2772 -1.158 0.247
changed_files 0.2295 0.983 0.326
followers -0.1798 -0.814 0.416
recent_activity 0.1535 0.714 0.475
additions 0.1190 0.527 0.598
open_issues -0.0707 -0.282 0.778
assignees 0.0215 0.093 0.926
author_association - 7903 <0.001

Tests results on merge speed for Dataset (3)

» Overwhelming alerts, pollute project history & v Improve bot-human interaction (combine PRs w/ edits &
notifications selection)

» Breaking changes, manual effort v’ Locate code fragments that require refactoring

» Frequency of updates, time to merge v' Support auto-merge w/ restriction options (update level)

» Threat lifetime, unknown vulnerabilities v’ Effective & efficient tools that rely on available data

» Tool adoption v’ Features : efficiency (configuration + integration),

accessibility, adaptivity, comprehensibility & support

Implications

Repository Owners'/ Maintainers

@ cConcerns @ Alternatives
» Not using tools / bots to handle vulnerabilities in v Maintain regular level of awareness (inspection & audits,
dependencies security reports, vulnerability DBs, advisories, etc.)
» Fix delay after discovering vulnerabilities v" Narrow window of exposure (e.g., suggest substitute

packages in absence of safer versions)

> Negative hidden threat lifetime React to fix disclosures (disable/remove vulnerable

versions, inform users about threats during installation)

List of most exploited vulnerabilities (e.g., security
> Common attacks evaluation like OWASP Top Ten)

Implications

» Factors impact handling security PRs v Be concise and make a long story short (consider
description size and # comments)

‘/ .
> Auto-closed PRs (superseded) React to open PRs and not ignore them for too long

v
> Bloated dependencies Keep dependency graph clean from redundant and

unused dependencies

Implications

Contributions

~
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘Q
*

Knowledge & Insights ‘ Adoption of bots in fixing vulnerabilities in
dependencies, developers’ patterns to
handle SSCAs, threat lifetime, &
management of security PRs

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
“
*

Dataset & Reference ‘ Dataset of 9,288,808 PRs-related issues in
"""""" 979,179 projects for more than 10 PLs, for
‘‘‘‘‘‘‘‘ general purposes (security, pull-based, etc.)
Data Collection Pipeline ‘ Pipeline to extract issues, pull requests,

repositories, commits and users’ data from
GitHub

.
.
.
.
.
.
.
.
*
.
.
.
.
.
.
.
.
.
*
.
.
*
.
.
*
.
.
.
.
.
.
.
.
.
*
.
.
.
.
.
.
.
.
*
*
.
.
*
.
.
*
.
.
.
.
.
R
K3

Thank You !

Any Questions ?

Bibliography

[1] Ghaffarian, Seyed Mohammad, and Hamid Reza Shahriari. "Software vulnerability analysis and discovery using machine-learning and data-mining techniques: A survey." ACM Computing Surveys (CSUR) 50, no. 4 (2017): 1-36.
[2] GREENBERG, A., 2021. What Is a Supply Chain Attack?. [online] Wired. Available at: https://www.wired.com/story/hacker-lexicon-what-is-a-supply-chain-attack [Accessed 6 July 2021].

[3] Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. "code2vec: Learning distributed representations of code." Proceedings of the ACM on Programming Languages 3, no. POPL (2019): 1-29.

[4] Fang, Chunrong, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. "Functional code clone detection with syntax and semantics fusion learning." In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 516-
527.2020.

[5] Sachdev, Saksham, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. "Retrieval on source code: a neural code search." In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages,
pp. 31-41. 2018.

[6] Hashemi, Hashem, and Ali Hamzeh. "Visual malware detection using local malicious pattern." Journal of Computer Virology and Hacking Techniques 15, no. 1 (2019): 1-14.

[7] Keller, Patrick, Laura Plein, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. "What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning." arXiv preprint arXiv:2002.02650 (2020).

[8] Ragkhitwetsagul, Chaiyong, Jens Krinke, and Bruno Marnette. "A picture is worth a thousand words: Code clone detection based on image similarity." In 2018 IEEE 12th International workshop on software clones (IWSC), pp. 44-50. IEEE, 2018.

[9] Chess, B., F. DeQuan Lee, and J. West. "Attacking the build through cross-build injection: how your build process can open the gates to a trojan horse." (2007): 24-25.

[10] Eggers, Shannon. "A novel approach for analyzing the nuclear supply chain cyber-attack surface." Nuclear Engineering and Technology 53, no. 3 (2021): 879-887.

[11] Ohm, Marc, Henrik Plate, Arnold Sykosch, and Michael Meier. "Backstabber’s knife collection: A review of open source software supply chain attacks." In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp.
23-43. Springer, Cham, 2020.

[12] Duan, Ruian, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformaggio, and Wenke Lee. "Measuring and preventing supply chain attacks on package managers." (2020).

[13] Vu, Duc Ly, lvan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta. "Towards using source code repositories to identify software supply chain attacks." In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2093-2095. 2020.

[14] Ohm, Marc, Arnold Sykosch, and Michael Meier. "Towards detection of software supply chain attacks by forensic artifacts." In Proceedings of the 15th international conference on availability, reliability and security, pp. 1-6. 2020.

[15] Garrett, Kalil, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kastner. "Detecting suspicious package updates." In 2019 IEEE/ACM 41st International Conference on Software Engineering: New |ldeas and Emerging Results (ICSE-NIER), pp. 13-16.
IEEE, 2019.

[16] Ohm, Marc, Lukas Kempf, Felix Boes, and Michael Meier. "If You've Seen One, You've Seen Them All: Leveraging AST Clustering Using MCL to Mimic Expertise to Detect Software Supply Chain Attacks." arXiv e-prints (2020): arXiv-2011.

[17] Lin, Guanjun, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. "POSTER: Vulnerability discovery with function representation learning from unlabeled projects." In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2539-2541. 2017.

[18] Russell, Rebecca, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley. "Automated vulnerability detection in source code using deep representation learning." In 2018 17th IEEE international conference
on machine learning and applications (ICMLA), pp. 757-762. IEEE, 2018.

[19] Lin, Guanjun, Wei Xiao, Jun Zhang, and Yang Xiang. "Deep learning-based vulnerable function detection: A benchmark." In International Conference on Information and Communications Security, pp. 219-232. Springer, Cham, 2019.

[20] Zhou, Yagin, Shangging Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. "Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks." Advances in neural information processing systems 32 (
[21] Wang, Huanting, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. "Combining graph-based learning with automated data collection for code vulnerability detection." IEEE Transactions

Information Forensics and Security 16 (2020): 1943-1958.

https://www.wired.com/story/hacker-lexicon-what-is-a-supply-chain-attack

' ‘ Appendix
@

Software Supply Chain Attack

What is a Software Supply Chain Attack (SSCA)?

A technique in which an adversary slips malicious code or even a malicious component into a
trusted piece of software or hardware. By compromising a single supplier, attackers can hijack the
distribution system to turn any application into Trojan horse [2].

= Attack vectors (Strategies)

- Social engineering

- Typo-squatting (E.g., jellyfish and jellyfish)

- Combo-squatting (E.g., python-ftp and pyftpdlib)
- Etc.

= Purpose

Stealing credentials
Data exfiltration
Cryptocurrency mining
- Etc

‘ Appendix

6

COMPROMISED

SDKS 18
[x]x]x} OPEN SOURCE
BERR REPOSITORIES
RRRRERR
RRRRRR
RRRRRR
DEVELOPMENT “ DEPENDENCIES
MALWARE MALWARE
INSERTED EMBEDDED
DEVELOPMENT
PROCESS ¥
SYSTEM DESIGN IMPLEMENTATION

A A

SUPPLY CHAIN
BBBBBB 3 2 VULNERABILITIES
RERRRRA . certificate theft
BBBBBB « Credential theft
mmmmmm * Flawed cryptography

mm Firmware editing
» Code injection

B m B m m B * Default hardcoded password

KEY

. COMPROMISED SOFTWARE

B veicaiy senicn B ——

m ATTACK VECTORS

mMALWARE 0—)

https://www.atlanticcouncil.org/in-depth-research-reports/report/breaking-trust-shades-of-crisis-across-an-insecure-software-supply-chain/

Software Supply Chain Life Cycle

ATTACK VECTOR

10
X]x]x]x]x
x]x]x]x]x

ACOUNT ACCESS

!

ITERATIVE TESTING

25

s 24

ATTACK
VECTOR

2,

x| x]x]x!
[x]x]x]x]x]

TYPOSQUATTING
N

DEPLOYMENT

ATTACKER-MADE
SOFTWARE

APP STORES

RRARA
..... USER DOWNLOAD

RRRRE 0 >
i MALWARE
RRRER EMBEDDED

UPDATES AND
MAINTENANCE

HIJACKED
31 UPDATES

ATTACK VECTORS

X} Presignature Insertion |

RRRRRRRRRRERARER stoen certificates 13
RRRBRRBERAR Account Access 9

B3B3 Flawed Cryptography 2

BERRseror Unsigned 3

