### Wireless security and hardware assisted Intrusion Detection System



CYBERUS SUMMER SCHOOL, France, July 03-07, 2023

#### Mohamed EL BOUAZZATI Tianxu LI Philippe TANGUY Guy GOGNIAT

Univ. Bretagne-Sud, Lab-STICC, Lorient, France



# 1 Research context

- 2 Threat model
- **3** Vulnerabilities in IoT
- Proposed security mechanism: hardware based HIDS

### 5 Test-bed & evaluation

# Outline



# 1 Research context

Threat model

4

### Vulnerabilities in IoT

Proposed security mechanism: hardware based HIDS

### Test-bed & evaluation



### Security of embedded systems?

- Physical access protection
- Cryptography implementation
- ..
- Network (wireless connection) entry point



Internet of things architecture



### • Main CPU for application

- Peripherals and connectivity
- Integration of protection mechanism
- Isolation between wireless connectivity unit and application processor



#### System-on-Chip overview



- Main CPU for application
- Peripherals and connectivity
- Integration of protection mechanism
- Isolation between wireless connectivity unit and application processor



#### System-on-Chip overview



- Main CPU for application
- Peripherals and connectivity
- Integration of protection mechanism
- Isolation between wireless connectivity unit and application processor



#### System-on-Chip overview



- Main CPU for application
- Peripherals and connectivity
- Integration of protection mechanism
- Isolation between wireless connectivity unit and application processor

![](_page_7_Figure_6.jpeg)

#### System-on-Chip overview

# Outline

![](_page_8_Picture_1.jpeg)

# **1** Research context

- 2 Threat model
  - Vulnerabilities in IoT
- Proposed security mechanism: hardware based HIDS
- 5 Test-bed & evaluation

### **Threat model**

![](_page_9_Picture_1.jpeg)

![](_page_9_Figure_2.jpeg)

#### Target: remote attacks

- Memory corruption attacks: packet injection, ...
- Possible exploits: denial of service, man in the middle, remote code execution and privilege escalation,...

### **Threat model**

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

#### Potential threat model

#### Target: remote attacks

- Memory corruption attacks: packet injection, ...
- Possible exploits: denial of service, man in the middle, remote code execution and privilege escalation,...

### **Threat model**

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

Potential threat model

#### Target: remote attacks

- Memory corruption attacks: packet injection, ...
- Possible exploits: denial of service, man in the middle, remote code execution and privilege escalation,...

### Outline

![](_page_12_Picture_1.jpeg)

### Research context

2 Threat model

### Vulnerabilities in IoT

- Attacks in IoT
- Attacks targeting LoRaWAN: examples
- Attacks targeting IEEE802.15.4: examples
- Security mechanisms & mitigation
- Proposed security mechanism: hardware based HIDS

### 5 Test-bed & evaluation

### **Vulnerabilities in IoT**

![](_page_13_Picture_1.jpeg)

#### Vulnerabilities

- A group of CVE found in IoT stacks
  - BLEEDINGBIT in Bluetooth/BLE
  - LoRaDawn in LoRa/LoRaWAN
  - AMNESIA33 in TCP/IP
  - Several CVE in Zigbee stacks (e.g. Philips HUE CVE-2020-6007)

#### • Reasons :

- Poor software development
- Encryption weakness
- Pairing process bypass
- •

#### SoC: IoT end-point Application USER Firmware Main CPU Soc: IoT end-point Wireless Connectivity Stack Sub-GHz / GHz Upper Layers I PHY PHY I Phy PHY I Fornt end

#### SoC for IoT with wireless connectivity

#### IoT Stack

- IoT stack implementation and standards are not secured
- Physical and MAC layers are vulnerable in various IoT stacks

### **Vulnerabilities in IoT**

![](_page_14_Picture_1.jpeg)

#### Vulnerabilities

- A group of CVE found in IoT stacks
  - BLEEDINGBIT in Bluetooth/BLE
  - LoRaDawn in LoRa/LoRaWAN
  - AMNESIA33 in TCP/IP
  - Several CVE in Zigbee stacks (e.g. Philips HUE CVE-2020-6007)
- Reasons :
  - Poor software development
  - Encryption weakness
  - Pairing process bypass
  - ...

#### SoC: loT end-point Application USER Firmware Main CPU Stack Sub-GHz / GHz Upper Layers MAC MAC PHY Firmware Mac Firmware Firmware Mac Firmware Firmware Mac Firmware Firmware Mac Firmware Firmware Firmware

#### SoC for IoT with wireless connectivity

#### IoT Stack

- IoT stack implementation and standards are not secured
- Physical and MAC layers are vulnerable in various IoT stacks

### **Vulnerabilities in IoT**

![](_page_15_Picture_1.jpeg)

#### Vulnerabilities

- A group of CVE found in IoT stacks
  - BLEEDINGBIT in Bluetooth/BLE
  - LoRaDawn in LoRa/LoRaWAN
  - AMNESIA33 in TCP/IP
  - Several CVE in Zigbee stacks (e.g. Philips HUE CVE-2020-6007)
- Reasons :
  - Poor software development
  - Encryption weakness
  - Pairing process bypass
  - ...

#### SoC: IoT end-point Application USER Firmware Main CPU Wireless Connectivity Stack Sub-GHz / GHz Upper Layers MAC MAC PHY PHY Firmware Form end

#### SoC for IoT with wireless connectivity

#### IoT Stack

- IoT stack implementation and standards are not secured
- Physical and MAC layers are vulnerable in various IoT stacks

### Attacks in IoT

![](_page_16_Picture_1.jpeg)

### Attacks in IoT

- Taking advantages of existing vulnerabilities in lower layers
- Targeting upper layers in IoT stack
- Possible exploits:
  - Taking control of IoT device
  - Denial of service
  - Stealing data
  - ...

![](_page_16_Figure_10.jpeg)

IoT stack layers

### Attacks in IoT

![](_page_17_Picture_1.jpeg)

### Attacks in IoT

- Taking advantages of existing vulnerabilities in lower layers
- Targeting upper layers in IoT stack
- Possible exploits:
  - Taking control of IoT device
  - Denial of service
  - Stealing data
  - ...

![](_page_17_Figure_10.jpeg)

IoT stack layers

# **Example: LoRaWAN**

![](_page_18_Picture_1.jpeg)

LoRa (from "long range") is a physical proprietary radio communication technique. It provides long-range connectivity by using the chirp spread spectrum technique.

LoRaWAN (Wide Area Network) defines the communication protocol and system architecture.

### LoRa + LoRaWAN -> Low Power, Wide Area (LPWA) networking protocol for IoTs

![](_page_18_Figure_5.jpeg)

LoRaWAN network architecture [1]

[1] LoRa Alliance Certification Committee, "Test tool simplifies and automates LoRaWAN certification," 5G Technology World, Apr. 28, 2022. https://www.5gtechnologyworld.com/testtool-simplifies-and-automates-lorawancertification/ (accessed Jun. 30, 2023).

![](_page_19_Picture_1.jpeg)

| Attack type     | Summary                                                                                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replay attack   | The attacker listens to the message, intercepts it and resends it if necessary to mislead the recipient. [2]                                                                                                           |
| DDoS/DOS        | The attacker floods the target servers with a large number of un-<br>wanted requests. This incapacitates the target server, thereby<br>disrupting services to genuine users. [3]                                       |
| Jamming Attack  | LoRa devices which send data simultaneously using certain fre-<br>quencies and parameters can corrupt each other's signal. By<br>abusing this vulnerability, it is possible to jam LoRa messages ma-<br>liciously. [4] |
| Buffer overflow | Due to a lack of buffer size checks, attackers can overflow a buffer<br>by sending a message longer than expected to corrupt an unli-<br>censed memory range. [5]                                                      |

#### Different types of attacks against LoRaWAN (Non-exhaustive)

[2] S. Na, D. Hwang, W. Shin, and K.-H. Kim, "Scenario and countermeasure for replay attack using join request messages in LoRaWAN," in 2017 International Conference on Information Networking (ICOIN), Jan. 2017, pp. 718–720. doi: 10.1109/ICOIN.2017.7899580.

[3] O. Jullian, B. Otero, E. Rodriguez, N. Gutierrez, H. Antona, and R. Canal, "Deep-Learning Based Detection for Cyber-Attacks in IoT Networks: A Distributed Attack Detection Framework," J Netw Syst Manage, vol. 31, no. 2, p. 33, Feb. 2023, doi: 10.1007/s10922-023-09722-7.

[4] C.-Y. Huang, C.-W. Lin, R.-G. Cheng, S. J. Yang, and S.-T. Sheu, "Experimental Evaluation of Jamming Threat in LoRaWAN," in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Apr. 2019, pp. 1–6. doi: 10.1109/VTCSpring.2019.8746374.

[5] M. E. Bouazzati, R. Tessier, P. Tanguy, and G. Gogniat, "A Lightweight Intrusion Detection System against IoT Memory Corruption Attacks," in 2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), May 2023, pp. 118–123. doi: 10.1109/DDECS57882.2023.10139718.

![](_page_20_Picture_1.jpeg)

### Over-the-Air Activation(OTTA) in Lorawan

• End devices participate in the network after exchanging the information necessary for data transmission through the OTAA procedure. In the OTAA procedure, messages that exchanged between the end device and the network server consist of join request and join accept. [6]

![](_page_20_Figure_4.jpeg)

OTAA message flow in LoRaWAN 1.0 [2]

[6] "End Device Activation," The Things Network. https://www.thethingsnetwork.org/docs/lorawan/end-device-activation/ (accessed Jun. 30, 2023).

© Mohamed EL BOUAZZATI Tianxu LI Philippe TANGUY Guy GOGNIAT

# **LoRaWAN - Replay Attack**

![](_page_21_Picture_1.jpeg)

### • Architecture of a Join Request Message [6]

- AppEUI: a 64-bit globally unique application identifier in IEEE EUI64 address space that uniquely identifies the entity able to process the Join-req frame.
- DevEUI: a 64-bit globally unique device identifier in IEEE EUI64 address space that uniquely identifies the end-device.
- DevNonce: a unique, random, 2-byte value generated by the end device. The Network Server uses the DevNonce of each end-device to keep track of their join requests. If an end device sends a Join-request with a previously used DevNonce, the Network Server rejects the Join-request and does not allow that end device to register with the network.

| Size(bytes)  | 8      | 8      | 2        |
|--------------|--------|--------|----------|
| Join Request | AppEUI | DevEUI | DevNonce |

Join request message

#### Vulnerability of a Join Request Message

 We can check all of the contents in join request message including frequency and SF(Spread Factor) information without decryption process. The DevNonce in this message is a value required for replay attack, we can use it to let the network server discards the request message of other target end device.

# LoRaWAN - Replay Attack

![](_page_22_Picture_1.jpeg)

- Three steps of Replay attack Using Sniffed Join Request Messages
  - **1.Information Gathering**: The attacker uses a sniffer devices to collect join requests messages. In this step attaker will try to collect messages as much as possible.
  - 2.Analysis of Data: The attacker analyzes the period in which a particular end device generates join request messages.
  - **3.Attack**: The attacker sends the same message with the same period. At this point the web server will try to connect with the attacker, and subsequent messages sent by the end device will be ignored. Since it is considered a repeated join request, the end device will be disconnected at this time.

![](_page_22_Figure_6.jpeg)

Schematic diagram of replay attack

![](_page_23_Picture_1.jpeg)

- What is IEEE 802.15.4:
  - IEEE 802.15.4 is a technical standard which defines the operation of a low-rate wireless personal area network (LR-WPAN). It specifies the physical layer and media access control for LR-WPANs.
- Zigbee & Thread

• Both Zigbee and Thread build on the physical layer and media access control defined in IEEE standard 802.15.4

![](_page_23_Figure_6.jpeg)

Zigbee vs Thread Protocol Layers

Zigbee and Thread protocol layering

![](_page_24_Picture_1.jpeg)

| Function                        | Zigbee                                                                      | Thread                                                                                  |
|---------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| IPv6 support                    | No                                                                          | Yes                                                                                     |
| Defin of App-<br>lication layer | Yes                                                                         | No                                                                                      |
| Authentication process          | Via a trust<br>center with<br>proximity-based<br>commissioning              | Smartphone-<br>based, QR code<br>scanning                                               |
| Security                        | Network-wide<br>encryption and<br>authentication<br>through install<br>code | Password-based<br>authentication<br>with Datagram<br>Transport Layer<br>Security (DTLS) |

![](_page_24_Figure_3.jpeg)

Zigbee vs Thread Protocol Layers

Zigbee and Thread protocol layering

Table : Diffrences between Zigbee and Thread [7]

[7] "Zigbee vs Thread | Difference between Zigbee and Thread."

https://www.rfwireless-world.com/Terminology/Difference-between-Zigbee-and-Thread.html (accessed Jun. 30, 2023).

© Mohamed EL BOUAZZATI Tianxu LI Philippe TANGUY Guy GOGNIAT

![](_page_25_Picture_1.jpeg)

| Attack type                    | Summary                                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sybil Attack                   | A Sybil attack uses a single node to operate many active fake iden-<br>tities simultaneously, within a peer-to-peer network. [8]                              |
| Energy Depletion Attack        | An attacker constructs bogus messages to lure a node to do su-<br>perfluous security-related computations to intentionally deplete<br>that node's energy. [9] |
| Jamming Attack                 | A malicious device emits high-power jamming signal to make all<br>the IEEE802.15.4 devices in its proximity unable to communicate.<br>[10]                    |
| Time Synchronization<br>Attack | Attacker uses faking DIO packets to damage the structure of time synchronization tree. [11]                                                                   |

Different types of attacks against IEEE802.15.4 (Non-exhaustive)

[8] F. Amini, J. Misic, and H. Pourreza, "Detection of Sybil Attack in Beacon Enabled IEEE802.15.4 Networks," in 2008 International Wireless Communications and Mobile Computing Conference, Aug. 2008, pp. 1058–1063. doi: 10.1109/IWCMC.2008.184.
[9] X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen, "Ghost-in-ZigBee: Energy Depletion Attack on ZigBee-Based Wireless Networks," IEEE Internet of Things Journal, vol. 3, no. 5, pp. 816–829, Oct. 2016, doi: 10.1109/JIOT.2016.2516102.
[10] H. Pirayesh, P. Kheirkhah Sangdeh, and H. Zeng, "Securing ZigBee Communications Against Constant Jamming Attack Using Neural Network," IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4957–4968, Mar. 2021, doi: 10.1109/JIOT.2020.3034128.
[11] W. Yang, Q. Wang, Y. Wan, and J. He, "Security Vulnerabilities and Countermeasures for Time Synchronization in IEEE802.15.4e Networks," in 2016 IEEE 37d International Conference on Cyber Security and Cloud Computing (CSCloud). Jun. 2016, pp. 102–107. doi: 10.1109/CSCloud.2016.44.

© Mohamed EL BOUAZZATI Tianxu LI Philippe TANGUY Guy GOGNIAT

![](_page_26_Picture_1.jpeg)

| Features                          | CC1356 | CC1352R1 | STM32WL54CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secure boot (protection)          | 1      | 1        | <ul> <li>Image: A second s</li></ul> |
| Cryptography (protection)         | 1      | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Over the air programming (update) | 1      | 1        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Memory protection                 | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Code instrumentation (protection) | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Information tracking (detection)  | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anomaly/intrusion detection       | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Platform security features comparison

### Security mechanisms

- Confidentiality, integrity and availability
- Protection mechanisms
- Update & over the air mechanisms
- Monitoring & detection mechanisms

![](_page_27_Picture_1.jpeg)

| Features                          | CC1356 | CC1352R1 | STM32WL54CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secure boot (protection)          | 1      | 1        | <ul> <li>Image: A second s</li></ul> |
| Cryptography (protection)         | 1      | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Over the air programming (update) | 1      | 1        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Memory protection                 | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Code instrumentation (protection) | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Information tracking (detection)  | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anomaly/intrusion detection       | ×      | ×        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Platform security features comparison

### Security mechanisms

- Confidentiality, integrity and availability
- Protection mechanisms
- Update & over the air mechanisms
- Monitoring & detection mechanisms

# Outline

![](_page_28_Picture_1.jpeg)

# **1** Research context

2 Threat model

4

Vulnerabilities in IoT

### Proposed security mechanism: hardware based HIDS

- Motivation and contribution
- Proposed lightweight hardware based HIDS
- Test-bed & evaluation

![](_page_29_Picture_1.jpeg)

#### Motivation

- Memory corruption attacks detection on wireless connectivity of IoT SoC
- Require a monitoring and detection capability in order to record system activity and identify potential attacks.

#### Contribution: Intrusion detection system (IDS)

Acquisition, analyze and identification, warn or block attacks

![](_page_30_Picture_1.jpeg)

#### Motivation

- Memory corruption attacks detection on wireless connectivity of IoT SoC
- Require a monitoring and detection capability in order to record system activity and identify potential attacks.

#### Contribution: Intrusion detection system (IDS)

Acquisition, analyze and identification, warn or block attacks

![](_page_31_Picture_1.jpeg)

A hardware implementation of monitoring and detection modules on IoT device's wireless connectivity unit:

![](_page_31_Figure_3.jpeg)

Wireless connectivity and HIDS (Host Intrusion Detection System) block diagram

![](_page_32_Picture_1.jpeg)

A hardware implementation of monitoring and detection modules on IoT device's wireless connectivity unit:

![](_page_32_Figure_3.jpeg)

Wireless connectivity and HIDS (Host Intrusion Detection System) block diagram

![](_page_32_Figure_5.jpeg)

Flow diagram of network packet processing, HPC monitoring and detection.

# Outline

![](_page_33_Picture_1.jpeg)

- 1 Research context
- 2 Threat model

5

- **3** Vulnerabilities in IoT
- Proposed security mechanism: hardware based HIDS

### **Test-bed & evaluation**

- Objective
- Simulation test-bed
- LoRa stack test-bed with HIDS
- Experimental results

![](_page_34_Picture_1.jpeg)

#### Test-bed and scenarios

- Record by HPMtracer (hardware block) micro-architectural events using hardware performance counters (HPC) available on CV32E41P (32 bits RISC-V Processor)
- Reproduction of memory corruption attacks simple buffer overflow exploit
- Build large dataset of HPC values per each packet network for further analysis

![](_page_35_Picture_1.jpeg)

#### Test-bed and scenarios

- Record by HPMtracer (hardware block) micro-architectural events using hardware performance counters (HPC) available on CV32E41P (32 bits RISC-V Processor)
- Reproduction of memory corruption attacks simple buffer overflow exploit
- Build large dataset of HPC values per each packet network for further analysis

![](_page_36_Picture_1.jpeg)

#### Test-bed and scenarios

- Record by HPMtracer (hardware block) micro-architectural events using hardware performance counters (HPC) available on CV32E41P (32 bits RISC-V Processor)
- Reproduction of memory corruption attacks simple buffer overflow exploit
- Build large dataset of HPC values per each packet network for further analysis

### Test-bed with HPC tracing from RISC-V CV32E41P

![](_page_37_Picture_1.jpeg)

![](_page_37_Figure_2.jpeg)

Test-bed block diagram

### Test-bed with HPC tracing from RISC-V CV32E41P

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

Test-bed block diagram

### Test-bed with HPC tracing from RISC-V CV32E41P

![](_page_39_Picture_1.jpeg)

![](_page_39_Figure_2.jpeg)

Test-bed block diagram

![](_page_40_Picture_1.jpeg)

| Attack scenarios |                    |               | Buffe    | r size   |
|------------------|--------------------|---------------|----------|----------|
| Dataset(packets) | Packet type        | Traffic size  | Stack    | Неар     |
| 2,000,000        | Legitimate         | 5 — 10 bytes  | 10 bytes | 10 bytes |
| 1,000,000        | S1: Stack overflow | 13 — 23 bytes | 10 bytes | 23 bytes |
| 1,000,000        | S2: Heap overflow  | 13 – 23 bytes | 23 bytes | 10 bytes |

![](_page_40_Figure_3.jpeg)

### Classification model with decision tree

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

#### **ML classification:**

- Decision tree classifier: limited overhead and suitable classification speed in hardware
- BRANCH\_TAKEN and LD\_STALL selected from 11 other micro-architectural events by Decision Tree

# LoRa test-bed over FPGA

![](_page_42_Picture_1.jpeg)

#### FPGA setup

- Arty A7-100T: Artix-7 FPGA
- LoRaWAN end-device stack by Semtech
- HIDS elements : HPMtracer + decision tree model

![](_page_42_Figure_6.jpeg)

![](_page_42_Figure_7.jpeg)

SoC architecture with LoRaMACnode stack

![](_page_43_Picture_1.jpeg)

Test-bed used for attack reproduction and security evaluation of HIDS components:

![](_page_43_Figure_3.jpeg)

LoRa test-bed with HIDS on Arty A7 FPGA board

![](_page_44_Picture_1.jpeg)

| True Positives | False Positives | True Neg. | False Neg. |  |
|----------------|-----------------|-----------|------------|--|
| 195, 704       | 13              | 193, 327  | 53         |  |
| False Negativ  | ve Rate (FNR):  | 0.027%    |            |  |
| False Positiv  | e Rate (FPR):   | 0.0       | 13%        |  |
| Detection      | Accuracy :      | 99.9      | 98%        |  |

Hardware decision tree implementation evaluation metrics

#### **Detection rate:** LoRa test-bed

- High detection rates +99.98%
- Few malicious network packets detected as legitimate -0.030%

![](_page_45_Picture_1.jpeg)

| HIDS elements |          | Overhead     |              | Freq          |               |                |
|---------------|----------|--------------|--------------|---------------|---------------|----------------|
|               | HPC (nb) | Tracer       | Detector     | LUT           | FF            | MHz            |
| V1            | √ (1)    | -            | -            | 4636 (+00%)   | 1237 (+00%)   | 65.86 (+00%)   |
| V2            | √ (2)    | -            | -            | 4802 (+3.58%) | 1318 (+6.54%) | 65.35 (-0.77%) |
| V3            | √ (2)    | $\checkmark$ | $\checkmark$ | 4932 (+6.38%) | 1318 (+6.54%) | 65.47 (-0.59%) |

Implementation resource utilization and power consumption

#### Resource utilization: Arty-A7 35T FPGA

- 6.4%, 6.5% of LUTs/FFs area overhead
- 0.6% No impact on the design's performance (65MHz)

# Conclusion

![](_page_46_Picture_1.jpeg)

### Addressing IoT device security issues at network entry point:

#### **Current work**

- · New approach for monitoring and detecting memory corruption attacks against IoT devices
- Simulation test-bed generates large dataset of micro-architectural events using hardware counters
- Evaluation using real prototype test-bed with LoRa protocol
- Achievement of high detection rates +99.98% with an FPGA area overhead of less than 6.5% and without
  impact of maximum clock frequency 65 MHz.

#### **Future work**

- Include new metrics (SNR, RSSI, IAT,...) + new attacks (jamming, ...)
- Implementation with embedded operating system (FreeRTOS, Zephyr, ...)
- HIDS security and resources evaluation (comparison with software version, power consumption).

# Conclusion

![](_page_47_Picture_1.jpeg)

### Addressing IoT device security issues at network entry point:

#### **Current work**

- · New approach for monitoring and detecting memory corruption attacks against IoT devices
- Simulation test-bed generates large dataset of micro-architectural events using hardware counters
- Evaluation using real prototype test-bed with LoRa protocol
- Achievement of high detection rates +99.98% with an FPGA area overhead of less than 6.5% and without
  impact of maximum clock frequency 65 MHz.

#### **Future work**

- Include new metrics (SNR, RSSI, IAT,...) + new attacks (jamming, ...)
- Implementation with embedded operating system (FreeRTOS, Zephyr, ...)
- HIDS security and resources evaluation (comparison with software version, power consumption).

# **THANK YOU**

### Wireless security and hardware assisted Intrusion Detection System

![](_page_49_Picture_1.jpeg)

CYBERUS SUMMER SCHOOL, France, July 03-07, 2023

#### Mohamed EL BOUAZZATI Tianxu LI Philippe TANGUY Guy GOGNIAT

Univ. Bretagne-Sud, Lab-STICC, Lorient, France

# References (1/1)

![](_page_50_Picture_1.jpeg)

# Appendix (1/8)

![](_page_51_Picture_1.jpeg)

![](_page_51_Figure_2.jpeg)

SoC architecture with LoRaMACnode stack

# Appendix (2/8)

![](_page_52_Picture_1.jpeg)

![](_page_53_Picture_1.jpeg)

| Hardware Event | Description                               | Counter |
|----------------|-------------------------------------------|---------|
| CYCLES         | Number of cycles                          | 0       |
| INSTR          | Number of instructions retired            | 2       |
| LD_STALL       | Number of load use hazards                | 3       |
| JMP_STALL      | Number of jump register hazards           | 4       |
| IMISS          | Cycles waiting for instruction fetches    | 5       |
| LD             | Number of load instructions               |         |
| ST             | Number of store instructions              | 7       |
| JUMP           | Number of jumps (unconditional)           | 8       |
| BRANCH         | Number of branches (conditional)          | 9       |
| BRANCH_TAKEN   | Number of branches taken (conditional)    | 10      |
| COMP_INSTR     | Number of compressed instructions retired | 11      |

List of hardware events monitored by the CV32E41P performance counters

![](_page_54_Picture_1.jpeg)

![](_page_54_Figure_2.jpeg)

Wireless connectivity and HIDS (Host Intrusion Detection System) block diagram

# Appendix (5/8)

![](_page_55_Picture_1.jpeg)

Appendix (6/8)

![](_page_56_Picture_1.jpeg)

![](_page_56_Figure_2.jpeg)

CV32E41P/40P block diagram

# Appendix (7/8)

![](_page_57_Picture_1.jpeg)

![](_page_58_Picture_1.jpeg)

![](_page_58_Figure_2.jpeg)

Flow diagram of network packet processing, HPC monitoring and detection.

![](_page_59_Picture_0.jpeg)

### Arty-a7 100T FPGA with SX1276 based LoRa shield